# engine/result.py # Copyright (C) 2005-2022 the SQLAlchemy authors and contributors # # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php """Define generic result set constructs.""" import functools import itertools import operator from .row import _baserow_usecext from .row import Row from .. import exc from .. import util from ..sql.base import _generative from ..sql.base import HasMemoized from ..sql.base import InPlaceGenerative from ..util import collections_abc from ..util import py2k if _baserow_usecext: from sqlalchemy.cresultproxy import tuplegetter _row_as_tuple = tuplegetter else: def tuplegetter(*indexes): it = operator.itemgetter(*indexes) if len(indexes) > 1: return it else: return lambda row: (it(row),) def _row_as_tuple(*indexes): # circumvent LegacyRow.__getitem__ pointing to # _get_by_key_impl_mapping for now. otherwise we could # use itemgetter getters = [ operator.methodcaller("_get_by_int_impl", index) for index in indexes ] return lambda rec: tuple([getter(rec) for getter in getters]) class ResultMetaData(object): """Base for metadata about result rows.""" __slots__ = () _tuplefilter = None _translated_indexes = None _unique_filters = None @property def keys(self): return RMKeyView(self) def _has_key(self, key): raise NotImplementedError() def _for_freeze(self): raise NotImplementedError() def _key_fallback(self, key, err, raiseerr=True): assert raiseerr util.raise_(KeyError(key), replace_context=err) def _warn_for_nonint(self, key): util.warn_deprecated_20( "Retrieving row members using strings or other non-integers is " "deprecated; use row._mapping for a dictionary interface " "to the row" ) def _raise_for_nonint(self, key): raise TypeError( "TypeError: tuple indices must be integers or slices, not %s" % type(key).__name__ ) def _index_for_key(self, keys, raiseerr): raise NotImplementedError() def _metadata_for_keys(self, key): raise NotImplementedError() def _reduce(self, keys): raise NotImplementedError() def _getter(self, key, raiseerr=True): index = self._index_for_key(key, raiseerr) if index is not None: return operator.itemgetter(index) else: return None def _row_as_tuple_getter(self, keys): indexes = self._indexes_for_keys(keys) return _row_as_tuple(*indexes) class RMKeyView(collections_abc.KeysView): __slots__ = ("_parent", "_keys") def __init__(self, parent): self._parent = parent self._keys = [k for k in parent._keys if k is not None] def __len__(self): return len(self._keys) def __repr__(self): return "{0.__class__.__name__}({0._keys!r})".format(self) def __iter__(self): return iter(self._keys) def __contains__(self, item): if not _baserow_usecext and isinstance(item, int): return False # note this also includes special key fallback behaviors # which also don't seem to be tested in test_resultset right now return self._parent._has_key(item) def __eq__(self, other): return list(other) == list(self) def __ne__(self, other): return list(other) != list(self) class SimpleResultMetaData(ResultMetaData): """result metadata for in-memory collections.""" __slots__ = ( "_keys", "_keymap", "_processors", "_tuplefilter", "_translated_indexes", "_unique_filters", ) def __init__( self, keys, extra=None, _processors=None, _tuplefilter=None, _translated_indexes=None, _unique_filters=None, ): self._keys = list(keys) self._tuplefilter = _tuplefilter self._translated_indexes = _translated_indexes self._unique_filters = _unique_filters if extra: recs_names = [ ( (name,) + extras, (index, name, extras), ) for index, (name, extras) in enumerate(zip(self._keys, extra)) ] else: recs_names = [ ((name,), (index, name, ())) for index, name in enumerate(self._keys) ] self._keymap = {key: rec for keys, rec in recs_names for key in keys} self._processors = _processors def _has_key(self, key): return key in self._keymap def _for_freeze(self): unique_filters = self._unique_filters if unique_filters and self._tuplefilter: unique_filters = self._tuplefilter(unique_filters) # TODO: are we freezing the result with or without uniqueness # applied? return SimpleResultMetaData( self._keys, extra=[self._keymap[key][2] for key in self._keys], _unique_filters=unique_filters, ) def __getstate__(self): return { "_keys": self._keys, "_translated_indexes": self._translated_indexes, } def __setstate__(self, state): if state["_translated_indexes"]: _translated_indexes = state["_translated_indexes"] _tuplefilter = tuplegetter(*_translated_indexes) else: _translated_indexes = _tuplefilter = None self.__init__( state["_keys"], _translated_indexes=_translated_indexes, _tuplefilter=_tuplefilter, ) def _contains(self, value, row): return value in row._data def _index_for_key(self, key, raiseerr=True): if int in key.__class__.__mro__: key = self._keys[key] try: rec = self._keymap[key] except KeyError as ke: rec = self._key_fallback(key, ke, raiseerr) return rec[0] def _indexes_for_keys(self, keys): return [self._keymap[key][0] for key in keys] def _metadata_for_keys(self, keys): for key in keys: if int in key.__class__.__mro__: key = self._keys[key] try: rec = self._keymap[key] except KeyError as ke: rec = self._key_fallback(key, ke, True) yield rec def _reduce(self, keys): try: metadata_for_keys = [ self._keymap[ self._keys[key] if int in key.__class__.__mro__ else key ] for key in keys ] except KeyError as ke: self._key_fallback(ke.args[0], ke, True) indexes, new_keys, extra = zip(*metadata_for_keys) if self._translated_indexes: indexes = [self._translated_indexes[idx] for idx in indexes] tup = tuplegetter(*indexes) new_metadata = SimpleResultMetaData( new_keys, extra=extra, _tuplefilter=tup, _translated_indexes=indexes, _processors=self._processors, _unique_filters=self._unique_filters, ) return new_metadata def result_tuple(fields, extra=None): parent = SimpleResultMetaData(fields, extra) return functools.partial( Row, parent, parent._processors, parent._keymap, Row._default_key_style ) # a symbol that indicates to internal Result methods that # "no row is returned". We can't use None for those cases where a scalar # filter is applied to rows. _NO_ROW = util.symbol("NO_ROW") class ResultInternal(InPlaceGenerative): _real_result = None _generate_rows = True _unique_filter_state = None _post_creational_filter = None _is_cursor = False @HasMemoized.memoized_attribute def _row_getter(self): real_result = self._real_result if self._real_result else self if real_result._source_supports_scalars: if not self._generate_rows: return None else: _proc = real_result._process_row def process_row( metadata, processors, keymap, key_style, scalar_obj ): return _proc( metadata, processors, keymap, key_style, (scalar_obj,) ) else: process_row = real_result._process_row key_style = real_result._process_row._default_key_style metadata = self._metadata keymap = metadata._keymap processors = metadata._processors tf = metadata._tuplefilter if tf and not real_result._source_supports_scalars: if processors: processors = tf(processors) _make_row_orig = functools.partial( process_row, metadata, processors, keymap, key_style ) def make_row(row): return _make_row_orig(tf(row)) else: make_row = functools.partial( process_row, metadata, processors, keymap, key_style ) fns = () if real_result._row_logging_fn: fns = (real_result._row_logging_fn,) else: fns = () if fns: _make_row = make_row def make_row(row): row = _make_row(row) for fn in fns: row = fn(row) return row return make_row @HasMemoized.memoized_attribute def _iterator_getter(self): make_row = self._row_getter post_creational_filter = self._post_creational_filter if self._unique_filter_state: uniques, strategy = self._unique_strategy def iterrows(self): for row in self._fetchiter_impl(): obj = make_row(row) if make_row else row hashed = strategy(obj) if strategy else obj if hashed in uniques: continue uniques.add(hashed) if post_creational_filter: obj = post_creational_filter(obj) yield obj else: def iterrows(self): for row in self._fetchiter_impl(): row = make_row(row) if make_row else row if post_creational_filter: row = post_creational_filter(row) yield row return iterrows def _raw_all_rows(self): make_row = self._row_getter rows = self._fetchall_impl() return [make_row(row) for row in rows] def _allrows(self): post_creational_filter = self._post_creational_filter make_row = self._row_getter rows = self._fetchall_impl() if make_row: made_rows = [make_row(row) for row in rows] else: made_rows = rows if self._unique_filter_state: uniques, strategy = self._unique_strategy rows = [ made_row for made_row, sig_row in [ ( made_row, strategy(made_row) if strategy else made_row, ) for made_row in made_rows ] if sig_row not in uniques and not uniques.add(sig_row) ] else: rows = made_rows if post_creational_filter: rows = [post_creational_filter(row) for row in rows] return rows @HasMemoized.memoized_attribute def _onerow_getter(self): make_row = self._row_getter post_creational_filter = self._post_creational_filter if self._unique_filter_state: uniques, strategy = self._unique_strategy def onerow(self): _onerow = self._fetchone_impl while True: row = _onerow() if row is None: return _NO_ROW else: obj = make_row(row) if make_row else row hashed = strategy(obj) if strategy else obj if hashed in uniques: continue else: uniques.add(hashed) if post_creational_filter: obj = post_creational_filter(obj) return obj else: def onerow(self): row = self._fetchone_impl() if row is None: return _NO_ROW else: row = make_row(row) if make_row else row if post_creational_filter: row = post_creational_filter(row) return row return onerow @HasMemoized.memoized_attribute def _manyrow_getter(self): make_row = self._row_getter post_creational_filter = self._post_creational_filter if self._unique_filter_state: uniques, strategy = self._unique_strategy def filterrows(make_row, rows, strategy, uniques): if make_row: rows = [make_row(row) for row in rows] if strategy: made_rows = ( (made_row, strategy(made_row)) for made_row in rows ) else: made_rows = ((made_row, made_row) for made_row in rows) return [ made_row for made_row, sig_row in made_rows if sig_row not in uniques and not uniques.add(sig_row) ] def manyrows(self, num): collect = [] _manyrows = self._fetchmany_impl if num is None: # if None is passed, we don't know the default # manyrows number, DBAPI has this as cursor.arraysize # different DBAPIs / fetch strategies may be different. # do a fetch to find what the number is. if there are # only fewer rows left, then it doesn't matter. real_result = ( self._real_result if self._real_result else self ) if real_result._yield_per: num_required = num = real_result._yield_per else: rows = _manyrows(num) num = len(rows) collect.extend( filterrows(make_row, rows, strategy, uniques) ) num_required = num - len(collect) else: num_required = num while num_required: rows = _manyrows(num_required) if not rows: break collect.extend( filterrows(make_row, rows, strategy, uniques) ) num_required = num - len(collect) if post_creational_filter: collect = [post_creational_filter(row) for row in collect] return collect else: def manyrows(self, num): if num is None: real_result = ( self._real_result if self._real_result else self ) num = real_result._yield_per rows = self._fetchmany_impl(num) if make_row: rows = [make_row(row) for row in rows] if post_creational_filter: rows = [post_creational_filter(row) for row in rows] return rows return manyrows def _only_one_row( self, raise_for_second_row, raise_for_none, scalar, ): onerow = self._fetchone_impl row = onerow(hard_close=True) if row is None: if raise_for_none: raise exc.NoResultFound( "No row was found when one was required" ) else: return None if scalar and self._source_supports_scalars: self._generate_rows = False make_row = None else: make_row = self._row_getter try: row = make_row(row) if make_row else row except: self._soft_close(hard=True) raise if raise_for_second_row: if self._unique_filter_state: # for no second row but uniqueness, need to essentially # consume the entire result :( uniques, strategy = self._unique_strategy existing_row_hash = strategy(row) if strategy else row while True: next_row = onerow(hard_close=True) if next_row is None: next_row = _NO_ROW break try: next_row = make_row(next_row) if make_row else next_row if strategy: if existing_row_hash == strategy(next_row): continue elif row == next_row: continue # here, we have a row and it's different break except: self._soft_close(hard=True) raise else: next_row = onerow(hard_close=True) if next_row is None: next_row = _NO_ROW if next_row is not _NO_ROW: self._soft_close(hard=True) raise exc.MultipleResultsFound( "Multiple rows were found when exactly one was required" if raise_for_none else "Multiple rows were found when one or none " "was required" ) else: next_row = _NO_ROW # if we checked for second row then that would have # closed us :) self._soft_close(hard=True) if not scalar: post_creational_filter = self._post_creational_filter if post_creational_filter: row = post_creational_filter(row) if scalar and make_row: return row[0] else: return row def _iter_impl(self): return self._iterator_getter(self) def _next_impl(self): row = self._onerow_getter(self) if row is _NO_ROW: raise StopIteration() else: return row @_generative def _column_slices(self, indexes): real_result = self._real_result if self._real_result else self if real_result._source_supports_scalars and len(indexes) == 1: util.warn_deprecated( "The Result.columns() method has a bug in SQLAlchemy 1.4 that " "is causing it to yield scalar values, rather than Row " "objects, in the case where a single index is passed and the " "result is against ORM mapped objects. In SQLAlchemy 2.0, " "Result will continue yield Row objects in this scenario. " "Use the Result.scalars() method to yield scalar values.", "2.0", ) self._generate_rows = False else: self._generate_rows = True self._metadata = self._metadata._reduce(indexes) @HasMemoized.memoized_attribute def _unique_strategy(self): uniques, strategy = self._unique_filter_state real_result = ( self._real_result if self._real_result is not None else self ) if not strategy and self._metadata._unique_filters: if ( real_result._source_supports_scalars and not self._generate_rows ): strategy = self._metadata._unique_filters[0] else: filters = self._metadata._unique_filters if self._metadata._tuplefilter: filters = self._metadata._tuplefilter(filters) strategy = operator.methodcaller("_filter_on_values", filters) return uniques, strategy class _WithKeys(object): # used mainly to share documentation on the keys method. # py2k does not allow overriding the __doc__ attribute. def keys(self): """Return an iterable view which yields the string keys that would be represented by each :class:`.Row`. The keys can represent the labels of the columns returned by a core statement or the names of the orm classes returned by an orm execution. The view also can be tested for key containment using the Python ``in`` operator, which will test both for the string keys represented in the view, as well as for alternate keys such as column objects. .. versionchanged:: 1.4 a key view object is returned rather than a plain list. """ return self._metadata.keys class Result(_WithKeys, ResultInternal): """Represent a set of database results. .. versionadded:: 1.4 The :class:`.Result` object provides a completely updated usage model and calling facade for SQLAlchemy Core and SQLAlchemy ORM. In Core, it forms the basis of the :class:`.CursorResult` object which replaces the previous :class:`.ResultProxy` interface. When using the ORM, a higher level object called :class:`.ChunkedIteratorResult` is normally used. .. note:: In SQLAlchemy 1.4 and above, this object is used for ORM results returned by :meth:`_orm.Session.execute`, which can yield instances of ORM mapped objects either individually or within tuple-like rows. Note that the :class:`_result.Result` object does not deduplicate instances or rows automatically as is the case with the legacy :class:`_orm.Query` object. For in-Python de-duplication of instances or rows, use the :meth:`_result.Result.unique` modifier method. .. seealso:: :ref:`tutorial_fetching_rows` - in the :doc:`/tutorial/index` """ _process_row = Row _row_logging_fn = None _source_supports_scalars = False _yield_per = None _attributes = util.immutabledict() def __init__(self, cursor_metadata): self._metadata = cursor_metadata def _soft_close(self, hard=False): raise NotImplementedError() def close(self): """close this :class:`_result.Result`. The behavior of this method is implementation specific, and is not implemented by default. The method should generally end the resources in use by the result object and also cause any subsequent iteration or row fetching to raise :class:`.ResourceClosedError`. .. versionadded:: 1.4.27 - ``.close()`` was previously not generally available for all :class:`_result.Result` classes, instead only being available on the :class:`_engine.CursorResult` returned for Core statement executions. As most other result objects, namely the ones used by the ORM, are proxying a :class:`_engine.CursorResult` in any case, this allows the underlying cursor result to be closed from the outside facade for the case when the ORM query is using the ``yield_per`` execution option where it does not immediately exhaust and autoclose the database cursor. """ self._soft_close(hard=True) @_generative def yield_per(self, num): """Configure the row-fetching strategy to fetch ``num`` rows at a time. This impacts the underlying behavior of the result when iterating over the result object, or otherwise making use of methods such as :meth:`_engine.Result.fetchone` that return one row at a time. Data from the underlying cursor or other data source will be buffered up to this many rows in memory, and the buffered collection will then be yielded out one row at at time or as many rows are requested. Each time the buffer clears, it will be refreshed to this many rows or as many rows remain if fewer remain. The :meth:`_engine.Result.yield_per` method is generally used in conjunction with the :paramref:`_engine.Connection.execution_options.stream_results` execution option, which will allow the database dialect in use to make use of a server side cursor, if the DBAPI supports a specific "server side cursor" mode separate from its default mode of operation. .. tip:: Consider using the :paramref:`_engine.Connection.execution_options.yield_per` execution option, which will simultaneously set :paramref:`_engine.Connection.execution_options.stream_results` to ensure the use of server side cursors, as well as automatically invoke the :meth:`_engine.Result.yield_per` method to establish a fixed row buffer size at once. The :paramref:`_engine.Connection.execution_options.yield_per` execution option is available for ORM operations, with :class:`_orm.Session`-oriented use described at :ref:`orm_queryguide_yield_per`. The Core-only version which works with :class:`_engine.Connection` is new as of SQLAlchemy 1.4.40. .. versionadded:: 1.4 :param num: number of rows to fetch each time the buffer is refilled. If set to a value below 1, fetches all rows for the next buffer. .. seealso:: :ref:`engine_stream_results` - describes Core behavior for :meth:`_engine.Result.yield_per` :ref:`orm_queryguide_yield_per` - in the :ref:`queryguide_toplevel` """ self._yield_per = num @_generative def unique(self, strategy=None): """Apply unique filtering to the objects returned by this :class:`_engine.Result`. When this filter is applied with no arguments, the rows or objects returned will filtered such that each row is returned uniquely. The algorithm used to determine this uniqueness is by default the Python hashing identity of the whole tuple. In some cases a specialized per-entity hashing scheme may be used, such as when using the ORM, a scheme is applied which works against the primary key identity of returned objects. The unique filter is applied **after all other filters**, which means if the columns returned have been refined using a method such as the :meth:`_engine.Result.columns` or :meth:`_engine.Result.scalars` method, the uniquing is applied to **only the column or columns returned**. This occurs regardless of the order in which these methods have been called upon the :class:`_engine.Result` object. The unique filter also changes the calculus used for methods like :meth:`_engine.Result.fetchmany` and :meth:`_engine.Result.partitions`. When using :meth:`_engine.Result.unique`, these methods will continue to yield the number of rows or objects requested, after uniquing has been applied. However, this necessarily impacts the buffering behavior of the underlying cursor or datasource, such that multiple underlying calls to ``cursor.fetchmany()`` may be necessary in order to accumulate enough objects in order to provide a unique collection of the requested size. :param strategy: a callable that will be applied to rows or objects being iterated, which should return an object that represents the unique value of the row. A Python ``set()`` is used to store these identities. If not passed, a default uniqueness strategy is used which may have been assembled by the source of this :class:`_engine.Result` object. """ self._unique_filter_state = (set(), strategy) def columns(self, *col_expressions): r"""Establish the columns that should be returned in each row. This method may be used to limit the columns returned as well as to reorder them. The given list of expressions are normally a series of integers or string key names. They may also be appropriate :class:`.ColumnElement` objects which correspond to a given statement construct. E.g.:: statement = select(table.c.x, table.c.y, table.c.z) result = connection.execute(statement) for z, y in result.columns('z', 'y'): # ... Example of using the column objects from the statement itself:: for z, y in result.columns( statement.selected_columns.c.z, statement.selected_columns.c.y ): # ... .. versionadded:: 1.4 :param \*col_expressions: indicates columns to be returned. Elements may be integer row indexes, string column names, or appropriate :class:`.ColumnElement` objects corresponding to a select construct. :return: this :class:`_engine.Result` object with the modifications given. """ return self._column_slices(col_expressions) def scalars(self, index=0): """Return a :class:`_result.ScalarResult` filtering object which will return single elements rather than :class:`_row.Row` objects. E.g.:: >>> result = conn.execute(text("select int_id from table")) >>> result.scalars().all() [1, 2, 3] When results are fetched from the :class:`_result.ScalarResult` filtering object, the single column-row that would be returned by the :class:`_result.Result` is instead returned as the column's value. .. versionadded:: 1.4 :param index: integer or row key indicating the column to be fetched from each row, defaults to ``0`` indicating the first column. :return: a new :class:`_result.ScalarResult` filtering object referring to this :class:`_result.Result` object. """ return ScalarResult(self, index) def _getter(self, key, raiseerr=True): """return a callable that will retrieve the given key from a :class:`.Row`. """ if self._source_supports_scalars: raise NotImplementedError( "can't use this function in 'only scalars' mode" ) return self._metadata._getter(key, raiseerr) def _tuple_getter(self, keys): """return a callable that will retrieve the given keys from a :class:`.Row`. """ if self._source_supports_scalars: raise NotImplementedError( "can't use this function in 'only scalars' mode" ) return self._metadata._row_as_tuple_getter(keys) def mappings(self): """Apply a mappings filter to returned rows, returning an instance of :class:`_result.MappingResult`. When this filter is applied, fetching rows will return :class:`.RowMapping` objects instead of :class:`.Row` objects. .. versionadded:: 1.4 :return: a new :class:`_result.MappingResult` filtering object referring to this :class:`_result.Result` object. """ return MappingResult(self) def _raw_row_iterator(self): """Return a safe iterator that yields raw row data. This is used by the :meth:`._engine.Result.merge` method to merge multiple compatible results together. """ raise NotImplementedError() def _fetchiter_impl(self): raise NotImplementedError() def _fetchone_impl(self, hard_close=False): raise NotImplementedError() def _fetchall_impl(self): raise NotImplementedError() def _fetchmany_impl(self, size=None): raise NotImplementedError() def __iter__(self): return self._iter_impl() def __next__(self): return self._next_impl() if py2k: def next(self): # noqa return self._next_impl() def partitions(self, size=None): """Iterate through sub-lists of rows of the size given. Each list will be of the size given, excluding the last list to be yielded, which may have a small number of rows. No empty lists will be yielded. The result object is automatically closed when the iterator is fully consumed. Note that the backend driver will usually buffer the entire result ahead of time unless the :paramref:`.Connection.execution_options.stream_results` execution option is used indicating that the driver should not pre-buffer results, if possible. Not all drivers support this option and the option is silently ignored for those who do not. When using the ORM, the :meth:`_engine.Result.partitions` method is typically more effective from a memory perspective when it is combined with use of the :ref:`yield_per execution option `, which instructs both the DBAPI driver to use server side cursors, if available, as well as instructs the ORM loading internals to only build a certain amount of ORM objects from a result at a time before yielding them out. .. versionadded:: 1.4 :param size: indicate the maximum number of rows to be present in each list yielded. If None, makes use of the value set by the :meth:`_engine.Result.yield_per`, method, if it were called, or the :paramref:`_engine.Connection.execution_options.yield_per` execution option, which is equivalent in this regard. If yield_per weren't set, it makes use of the :meth:`_engine.Result.fetchmany` default, which may be backend specific and not well defined. :return: iterator of lists .. seealso:: :ref:`engine_stream_results` :ref:`orm_queryguide_yield_per` - in the :ref:`queryguide_toplevel` """ getter = self._manyrow_getter while True: partition = getter(self, size) if partition: yield partition else: break def fetchall(self): """A synonym for the :meth:`_engine.Result.all` method.""" return self._allrows() def fetchone(self): """Fetch one row. When all rows are exhausted, returns None. This method is provided for backwards compatibility with SQLAlchemy 1.x.x. To fetch the first row of a result only, use the :meth:`_engine.Result.first` method. To iterate through all rows, iterate the :class:`_engine.Result` object directly. :return: a :class:`.Row` object if no filters are applied, or None if no rows remain. """ row = self._onerow_getter(self) if row is _NO_ROW: return None else: return row def fetchmany(self, size=None): """Fetch many rows. When all rows are exhausted, returns an empty list. This method is provided for backwards compatibility with SQLAlchemy 1.x.x. To fetch rows in groups, use the :meth:`._result.Result.partitions` method. :return: a list of :class:`.Row` objects. """ return self._manyrow_getter(self, size) def all(self): """Return all rows in a list. Closes the result set after invocation. Subsequent invocations will return an empty list. .. versionadded:: 1.4 :return: a list of :class:`.Row` objects. """ return self._allrows() def first(self): """Fetch the first row or None if no row is present. Closes the result set and discards remaining rows. .. note:: This method returns one **row**, e.g. tuple, by default. To return exactly one single scalar value, that is, the first column of the first row, use the :meth:`.Result.scalar` method, or combine :meth:`.Result.scalars` and :meth:`.Result.first`. Additionally, in contrast to the behavior of the legacy ORM :meth:`_orm.Query.first` method, **no limit is applied** to the SQL query which was invoked to produce this :class:`_engine.Result`; for a DBAPI driver that buffers results in memory before yielding rows, all rows will be sent to the Python process and all but the first row will be discarded. .. seealso:: :ref:`migration_20_unify_select` :return: a :class:`.Row` object, or None if no rows remain. .. seealso:: :meth:`_result.Result.scalar` :meth:`_result.Result.one` """ return self._only_one_row( raise_for_second_row=False, raise_for_none=False, scalar=False ) def one_or_none(self): """Return at most one result or raise an exception. Returns ``None`` if the result has no rows. Raises :class:`.MultipleResultsFound` if multiple rows are returned. .. versionadded:: 1.4 :return: The first :class:`.Row` or None if no row is available. :raises: :class:`.MultipleResultsFound` .. seealso:: :meth:`_result.Result.first` :meth:`_result.Result.one` """ return self._only_one_row( raise_for_second_row=True, raise_for_none=False, scalar=False ) def scalar_one(self): """Return exactly one scalar result or raise an exception. This is equivalent to calling :meth:`.Result.scalars` and then :meth:`.Result.one`. .. seealso:: :meth:`.Result.one` :meth:`.Result.scalars` """ return self._only_one_row( raise_for_second_row=True, raise_for_none=True, scalar=True ) def scalar_one_or_none(self): """Return exactly one or no scalar result. This is equivalent to calling :meth:`.Result.scalars` and then :meth:`.Result.one_or_none`. .. seealso:: :meth:`.Result.one_or_none` :meth:`.Result.scalars` """ return self._only_one_row( raise_for_second_row=True, raise_for_none=False, scalar=True ) def one(self): """Return exactly one row or raise an exception. Raises :class:`.NoResultFound` if the result returns no rows, or :class:`.MultipleResultsFound` if multiple rows would be returned. .. note:: This method returns one **row**, e.g. tuple, by default. To return exactly one single scalar value, that is, the first column of the first row, use the :meth:`.Result.scalar_one` method, or combine :meth:`.Result.scalars` and :meth:`.Result.one`. .. versionadded:: 1.4 :return: The first :class:`.Row`. :raises: :class:`.MultipleResultsFound`, :class:`.NoResultFound` .. seealso:: :meth:`_result.Result.first` :meth:`_result.Result.one_or_none` :meth:`_result.Result.scalar_one` """ return self._only_one_row( raise_for_second_row=True, raise_for_none=True, scalar=False ) def scalar(self): """Fetch the first column of the first row, and close the result set. Returns None if there are no rows to fetch. No validation is performed to test if additional rows remain. After calling this method, the object is fully closed, e.g. the :meth:`_engine.CursorResult.close` method will have been called. :return: a Python scalar value , or None if no rows remain. """ return self._only_one_row( raise_for_second_row=False, raise_for_none=False, scalar=True ) def freeze(self): """Return a callable object that will produce copies of this :class:`.Result` when invoked. The callable object returned is an instance of :class:`_engine.FrozenResult`. This is used for result set caching. The method must be called on the result when it has been unconsumed, and calling the method will consume the result fully. When the :class:`_engine.FrozenResult` is retrieved from a cache, it can be called any number of times where it will produce a new :class:`_engine.Result` object each time against its stored set of rows. .. seealso:: :ref:`do_orm_execute_re_executing` - example usage within the ORM to implement a result-set cache. """ return FrozenResult(self) def merge(self, *others): """Merge this :class:`.Result` with other compatible result objects. The object returned is an instance of :class:`_engine.MergedResult`, which will be composed of iterators from the given result objects. The new result will use the metadata from this result object. The subsequent result objects must be against an identical set of result / cursor metadata, otherwise the behavior is undefined. """ return MergedResult(self._metadata, (self,) + others) class FilterResult(ResultInternal): """A wrapper for a :class:`_engine.Result` that returns objects other than :class:`_result.Row` objects, such as dictionaries or scalar objects. :class:`.FilterResult` is the common base for additional result APIs including :class:`.MappingResult`, :class:`.ScalarResult` and :class:`.AsyncResult`. """ _post_creational_filter = None @_generative def yield_per(self, num): """Configure the row-fetching strategy to fetch ``num`` rows at a time. The :meth:`_engine.FilterResult.yield_per` method is a pass through to the :meth:`_engine.Result.yield_per` method. See that method's documentation for usage notes. .. versionadded:: 1.4.40 - added :meth:`_engine.FilterResult.yield_per` so that the method is available on all result set implementations .. seealso:: :ref:`engine_stream_results` - describes Core behavior for :meth:`_engine.Result.yield_per` :ref:`orm_queryguide_yield_per` - in the :ref:`queryguide_toplevel` """ self._real_result = self._real_result.yield_per(num) def _soft_close(self, hard=False): self._real_result._soft_close(hard=hard) @property def _attributes(self): return self._real_result._attributes def _fetchiter_impl(self): return self._real_result._fetchiter_impl() def _fetchone_impl(self, hard_close=False): return self._real_result._fetchone_impl(hard_close=hard_close) def _fetchall_impl(self): return self._real_result._fetchall_impl() def _fetchmany_impl(self, size=None): return self._real_result._fetchmany_impl(size=size) class ScalarResult(FilterResult): """A wrapper for a :class:`_result.Result` that returns scalar values rather than :class:`_row.Row` values. The :class:`_result.ScalarResult` object is acquired by calling the :meth:`_result.Result.scalars` method. A special limitation of :class:`_result.ScalarResult` is that it has no ``fetchone()`` method; since the semantics of ``fetchone()`` are that the ``None`` value indicates no more results, this is not compatible with :class:`_result.ScalarResult` since there is no way to distinguish between ``None`` as a row value versus ``None`` as an indicator. Use ``next(result)`` to receive values individually. """ _generate_rows = False def __init__(self, real_result, index): self._real_result = real_result if real_result._source_supports_scalars: self._metadata = real_result._metadata self._post_creational_filter = None else: self._metadata = real_result._metadata._reduce([index]) self._post_creational_filter = operator.itemgetter(0) self._unique_filter_state = real_result._unique_filter_state def unique(self, strategy=None): """Apply unique filtering to the objects returned by this :class:`_engine.ScalarResult`. See :meth:`_engine.Result.unique` for usage details. """ self._unique_filter_state = (set(), strategy) return self def partitions(self, size=None): """Iterate through sub-lists of elements of the size given. Equivalent to :meth:`_result.Result.partitions` except that scalar values, rather than :class:`_result.Row` objects, are returned. """ getter = self._manyrow_getter while True: partition = getter(self, size) if partition: yield partition else: break def fetchall(self): """A synonym for the :meth:`_engine.ScalarResult.all` method.""" return self._allrows() def fetchmany(self, size=None): """Fetch many objects. Equivalent to :meth:`_result.Result.fetchmany` except that scalar values, rather than :class:`_result.Row` objects, are returned. """ return self._manyrow_getter(self, size) def all(self): """Return all scalar values in a list. Equivalent to :meth:`_result.Result.all` except that scalar values, rather than :class:`_result.Row` objects, are returned. """ return self._allrows() def __iter__(self): return self._iter_impl() def __next__(self): return self._next_impl() if py2k: def next(self): # noqa return self._next_impl() def first(self): """Fetch the first object or None if no object is present. Equivalent to :meth:`_result.Result.first` except that scalar values, rather than :class:`_result.Row` objects, are returned. """ return self._only_one_row( raise_for_second_row=False, raise_for_none=False, scalar=False ) def one_or_none(self): """Return at most one object or raise an exception. Equivalent to :meth:`_result.Result.one_or_none` except that scalar values, rather than :class:`_result.Row` objects, are returned. """ return self._only_one_row( raise_for_second_row=True, raise_for_none=False, scalar=False ) def one(self): """Return exactly one object or raise an exception. Equivalent to :meth:`_result.Result.one` except that scalar values, rather than :class:`_result.Row` objects, are returned. """ return self._only_one_row( raise_for_second_row=True, raise_for_none=True, scalar=False ) class MappingResult(_WithKeys, FilterResult): """A wrapper for a :class:`_engine.Result` that returns dictionary values rather than :class:`_engine.Row` values. The :class:`_engine.MappingResult` object is acquired by calling the :meth:`_engine.Result.mappings` method. """ _generate_rows = True _post_creational_filter = operator.attrgetter("_mapping") def __init__(self, result): self._real_result = result self._unique_filter_state = result._unique_filter_state self._metadata = result._metadata if result._source_supports_scalars: self._metadata = self._metadata._reduce([0]) def unique(self, strategy=None): """Apply unique filtering to the objects returned by this :class:`_engine.MappingResult`. See :meth:`_engine.Result.unique` for usage details. """ self._unique_filter_state = (set(), strategy) return self def columns(self, *col_expressions): r"""Establish the columns that should be returned in each row.""" return self._column_slices(col_expressions) def partitions(self, size=None): """Iterate through sub-lists of elements of the size given. Equivalent to :meth:`_result.Result.partitions` except that mapping values, rather than :class:`_result.Row` objects, are returned. """ getter = self._manyrow_getter while True: partition = getter(self, size) if partition: yield partition else: break def fetchall(self): """A synonym for the :meth:`_engine.MappingResult.all` method.""" return self._allrows() def fetchone(self): """Fetch one object. Equivalent to :meth:`_result.Result.fetchone` except that mapping values, rather than :class:`_result.Row` objects, are returned. """ row = self._onerow_getter(self) if row is _NO_ROW: return None else: return row def fetchmany(self, size=None): """Fetch many objects. Equivalent to :meth:`_result.Result.fetchmany` except that mapping values, rather than :class:`_result.Row` objects, are returned. """ return self._manyrow_getter(self, size) def all(self): """Return all scalar values in a list. Equivalent to :meth:`_result.Result.all` except that mapping values, rather than :class:`_result.Row` objects, are returned. """ return self._allrows() def __iter__(self): return self._iter_impl() def __next__(self): return self._next_impl() if py2k: def next(self): # noqa return self._next_impl() def first(self): """Fetch the first object or None if no object is present. Equivalent to :meth:`_result.Result.first` except that mapping values, rather than :class:`_result.Row` objects, are returned. """ return self._only_one_row( raise_for_second_row=False, raise_for_none=False, scalar=False ) def one_or_none(self): """Return at most one object or raise an exception. Equivalent to :meth:`_result.Result.one_or_none` except that mapping values, rather than :class:`_result.Row` objects, are returned. """ return self._only_one_row( raise_for_second_row=True, raise_for_none=False, scalar=False ) def one(self): """Return exactly one object or raise an exception. Equivalent to :meth:`_result.Result.one` except that mapping values, rather than :class:`_result.Row` objects, are returned. """ return self._only_one_row( raise_for_second_row=True, raise_for_none=True, scalar=False ) class FrozenResult(object): """Represents a :class:`.Result` object in a "frozen" state suitable for caching. The :class:`_engine.FrozenResult` object is returned from the :meth:`_engine.Result.freeze` method of any :class:`_engine.Result` object. A new iterable :class:`.Result` object is generated from a fixed set of data each time the :class:`.FrozenResult` is invoked as a callable:: result = connection.execute(query) frozen = result.freeze() unfrozen_result_one = frozen() for row in unfrozen_result_one: print(row) unfrozen_result_two = frozen() rows = unfrozen_result_two.all() # ... etc .. versionadded:: 1.4 .. seealso:: :ref:`do_orm_execute_re_executing` - example usage within the ORM to implement a result-set cache. :func:`_orm.loading.merge_frozen_result` - ORM function to merge a frozen result back into a :class:`_orm.Session`. """ def __init__(self, result): self.metadata = result._metadata._for_freeze() self._source_supports_scalars = result._source_supports_scalars self._attributes = result._attributes if self._source_supports_scalars: self.data = list(result._raw_row_iterator()) else: self.data = result.fetchall() def rewrite_rows(self): if self._source_supports_scalars: return [[elem] for elem in self.data] else: return [list(row) for row in self.data] def with_new_rows(self, tuple_data): fr = FrozenResult.__new__(FrozenResult) fr.metadata = self.metadata fr._attributes = self._attributes fr._source_supports_scalars = self._source_supports_scalars if self._source_supports_scalars: fr.data = [d[0] for d in tuple_data] else: fr.data = tuple_data return fr def __call__(self): result = IteratorResult(self.metadata, iter(self.data)) result._attributes = self._attributes result._source_supports_scalars = self._source_supports_scalars return result class IteratorResult(Result): """A :class:`.Result` that gets data from a Python iterator of :class:`.Row` objects. .. versionadded:: 1.4 """ _hard_closed = False def __init__( self, cursor_metadata, iterator, raw=None, _source_supports_scalars=False, ): self._metadata = cursor_metadata self.iterator = iterator self.raw = raw self._source_supports_scalars = _source_supports_scalars def _soft_close(self, hard=False, **kw): if hard: self._hard_closed = True if self.raw is not None: self.raw._soft_close(hard=hard, **kw) self.iterator = iter([]) self._reset_memoizations() def _raise_hard_closed(self): raise exc.ResourceClosedError("This result object is closed.") def _raw_row_iterator(self): return self.iterator def _fetchiter_impl(self): if self._hard_closed: self._raise_hard_closed() return self.iterator def _fetchone_impl(self, hard_close=False): if self._hard_closed: self._raise_hard_closed() row = next(self.iterator, _NO_ROW) if row is _NO_ROW: self._soft_close(hard=hard_close) return None else: return row def _fetchall_impl(self): if self._hard_closed: self._raise_hard_closed() try: return list(self.iterator) finally: self._soft_close() def _fetchmany_impl(self, size=None): if self._hard_closed: self._raise_hard_closed() return list(itertools.islice(self.iterator, 0, size)) def null_result(): return IteratorResult(SimpleResultMetaData([]), iter([])) class ChunkedIteratorResult(IteratorResult): """An :class:`.IteratorResult` that works from an iterator-producing callable. The given ``chunks`` argument is a function that is given a number of rows to return in each chunk, or ``None`` for all rows. The function should then return an un-consumed iterator of lists, each list of the requested size. The function can be called at any time again, in which case it should continue from the same result set but adjust the chunk size as given. .. versionadded:: 1.4 """ def __init__( self, cursor_metadata, chunks, source_supports_scalars=False, raw=None, dynamic_yield_per=False, ): self._metadata = cursor_metadata self.chunks = chunks self._source_supports_scalars = source_supports_scalars self.raw = raw self.iterator = itertools.chain.from_iterable(self.chunks(None)) self.dynamic_yield_per = dynamic_yield_per @_generative def yield_per(self, num): # TODO: this throws away the iterator which may be holding # onto a chunk. the yield_per cannot be changed once any # rows have been fetched. either find a way to enforce this, # or we can't use itertools.chain and will instead have to # keep track. self._yield_per = num self.iterator = itertools.chain.from_iterable(self.chunks(num)) def _soft_close(self, **kw): super(ChunkedIteratorResult, self)._soft_close(**kw) self.chunks = lambda size: [] def _fetchmany_impl(self, size=None): if self.dynamic_yield_per: self.iterator = itertools.chain.from_iterable(self.chunks(size)) return super(ChunkedIteratorResult, self)._fetchmany_impl(size=size) class MergedResult(IteratorResult): """A :class:`_engine.Result` that is merged from any number of :class:`_engine.Result` objects. Returned by the :meth:`_engine.Result.merge` method. .. versionadded:: 1.4 """ closed = False def __init__(self, cursor_metadata, results): self._results = results super(MergedResult, self).__init__( cursor_metadata, itertools.chain.from_iterable( r._raw_row_iterator() for r in results ), ) self._unique_filter_state = results[0]._unique_filter_state self._yield_per = results[0]._yield_per # going to try something w/ this in next rev self._source_supports_scalars = results[0]._source_supports_scalars self._attributes = self._attributes.merge_with( *[r._attributes for r in results] ) def _soft_close(self, hard=False, **kw): for r in self._results: r._soft_close(hard=hard, **kw) if hard: self.closed = True