You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3558 lines
114 KiB
Python

# mssql/base.py
# Copyright (C) 2005-2022 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: https://www.opensource.org/licenses/mit-license.php
"""
.. dialect:: mssql
:name: Microsoft SQL Server
:full_support: 2017
:normal_support: 2012+
:best_effort: 2005+
.. _mssql_external_dialects:
External Dialects
-----------------
In addition to the above DBAPI layers with native SQLAlchemy support, there
are third-party dialects for other DBAPI layers that are compatible
with SQL Server. See the "External Dialects" list on the
:ref:`dialect_toplevel` page.
.. _mssql_identity:
Auto Increment Behavior / IDENTITY Columns
------------------------------------------
SQL Server provides so-called "auto incrementing" behavior using the
``IDENTITY`` construct, which can be placed on any single integer column in a
table. SQLAlchemy considers ``IDENTITY`` within its default "autoincrement"
behavior for an integer primary key column, described at
:paramref:`_schema.Column.autoincrement`. This means that by default,
the first integer primary key column in a :class:`_schema.Table` will be
considered to be the identity column - unless it is associated with a
:class:`.Sequence` - and will generate DDL as such::
from sqlalchemy import Table, MetaData, Column, Integer
m = MetaData()
t = Table('t', m,
Column('id', Integer, primary_key=True),
Column('x', Integer))
m.create_all(engine)
The above example will generate DDL as:
.. sourcecode:: sql
CREATE TABLE t (
id INTEGER NOT NULL IDENTITY,
x INTEGER NULL,
PRIMARY KEY (id)
)
For the case where this default generation of ``IDENTITY`` is not desired,
specify ``False`` for the :paramref:`_schema.Column.autoincrement` flag,
on the first integer primary key column::
m = MetaData()
t = Table('t', m,
Column('id', Integer, primary_key=True, autoincrement=False),
Column('x', Integer))
m.create_all(engine)
To add the ``IDENTITY`` keyword to a non-primary key column, specify
``True`` for the :paramref:`_schema.Column.autoincrement` flag on the desired
:class:`_schema.Column` object, and ensure that
:paramref:`_schema.Column.autoincrement`
is set to ``False`` on any integer primary key column::
m = MetaData()
t = Table('t', m,
Column('id', Integer, primary_key=True, autoincrement=False),
Column('x', Integer, autoincrement=True))
m.create_all(engine)
.. versionchanged:: 1.4 Added :class:`_schema.Identity` construct
in a :class:`_schema.Column` to specify the start and increment
parameters of an IDENTITY. These replace
the use of the :class:`.Sequence` object in order to specify these values.
.. deprecated:: 1.4
The ``mssql_identity_start`` and ``mssql_identity_increment`` parameters
to :class:`_schema.Column` are deprecated and should we replaced by
an :class:`_schema.Identity` object. Specifying both ways of configuring
an IDENTITY will result in a compile error.
These options are also no longer returned as part of the
``dialect_options`` key in :meth:`_reflection.Inspector.get_columns`.
Use the information in the ``identity`` key instead.
.. deprecated:: 1.3
The use of :class:`.Sequence` to specify IDENTITY characteristics is
deprecated and will be removed in a future release. Please use
the :class:`_schema.Identity` object parameters
:paramref:`_schema.Identity.start` and
:paramref:`_schema.Identity.increment`.
.. versionchanged:: 1.4 Removed the ability to use a :class:`.Sequence`
object to modify IDENTITY characteristics. :class:`.Sequence` objects
now only manipulate true T-SQL SEQUENCE types.
.. note::
There can only be one IDENTITY column on the table. When using
``autoincrement=True`` to enable the IDENTITY keyword, SQLAlchemy does not
guard against multiple columns specifying the option simultaneously. The
SQL Server database will instead reject the ``CREATE TABLE`` statement.
.. note::
An INSERT statement which attempts to provide a value for a column that is
marked with IDENTITY will be rejected by SQL Server. In order for the
value to be accepted, a session-level option "SET IDENTITY_INSERT" must be
enabled. The SQLAlchemy SQL Server dialect will perform this operation
automatically when using a core :class:`_expression.Insert`
construct; if the
execution specifies a value for the IDENTITY column, the "IDENTITY_INSERT"
option will be enabled for the span of that statement's invocation.However,
this scenario is not high performing and should not be relied upon for
normal use. If a table doesn't actually require IDENTITY behavior in its
integer primary key column, the keyword should be disabled when creating
the table by ensuring that ``autoincrement=False`` is set.
Controlling "Start" and "Increment"
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Specific control over the "start" and "increment" values for
the ``IDENTITY`` generator are provided using the
:paramref:`_schema.Identity.start` and :paramref:`_schema.Identity.increment`
parameters passed to the :class:`_schema.Identity` object::
from sqlalchemy import Table, Integer, Column, Identity
test = Table(
'test', metadata,
Column(
'id',
Integer,
primary_key=True,
Identity(start=100, increment=10)
),
Column('name', String(20))
)
The CREATE TABLE for the above :class:`_schema.Table` object would be:
.. sourcecode:: sql
CREATE TABLE test (
id INTEGER NOT NULL IDENTITY(100,10) PRIMARY KEY,
name VARCHAR(20) NULL,
)
.. note::
The :class:`_schema.Identity` object supports many other parameter in
addition to ``start`` and ``increment``. These are not supported by
SQL Server and will be ignored when generating the CREATE TABLE ddl.
.. versionchanged:: 1.3.19 The :class:`_schema.Identity` object is
now used to affect the
``IDENTITY`` generator for a :class:`_schema.Column` under SQL Server.
Previously, the :class:`.Sequence` object was used. As SQL Server now
supports real sequences as a separate construct, :class:`.Sequence` will be
functional in the normal way starting from SQLAlchemy version 1.4.
Using IDENTITY with Non-Integer numeric types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
SQL Server also allows ``IDENTITY`` to be used with ``NUMERIC`` columns. To
implement this pattern smoothly in SQLAlchemy, the primary datatype of the
column should remain as ``Integer``, however the underlying implementation
type deployed to the SQL Server database can be specified as ``Numeric`` using
:meth:`.TypeEngine.with_variant`::
from sqlalchemy import Column
from sqlalchemy import Integer
from sqlalchemy import Numeric
from sqlalchemy import String
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class TestTable(Base):
__tablename__ = "test"
id = Column(
Integer().with_variant(Numeric(10, 0), "mssql"),
primary_key=True,
autoincrement=True,
)
name = Column(String)
In the above example, ``Integer().with_variant()`` provides clear usage
information that accurately describes the intent of the code. The general
restriction that ``autoincrement`` only applies to ``Integer`` is established
at the metadata level and not at the per-dialect level.
When using the above pattern, the primary key identifier that comes back from
the insertion of a row, which is also the value that would be assigned to an
ORM object such as ``TestTable`` above, will be an instance of ``Decimal()``
and not ``int`` when using SQL Server. The numeric return type of the
:class:`_types.Numeric` type can be changed to return floats by passing False
to :paramref:`_types.Numeric.asdecimal`. To normalize the return type of the
above ``Numeric(10, 0)`` to return Python ints (which also support "long"
integer values in Python 3), use :class:`_types.TypeDecorator` as follows::
from sqlalchemy import TypeDecorator
class NumericAsInteger(TypeDecorator):
'''normalize floating point return values into ints'''
impl = Numeric(10, 0, asdecimal=False)
cache_ok = True
def process_result_value(self, value, dialect):
if value is not None:
value = int(value)
return value
class TestTable(Base):
__tablename__ = "test"
id = Column(
Integer().with_variant(NumericAsInteger, "mssql"),
primary_key=True,
autoincrement=True,
)
name = Column(String)
INSERT behavior
^^^^^^^^^^^^^^^^
Handling of the ``IDENTITY`` column at INSERT time involves two key
techniques. The most common is being able to fetch the "last inserted value"
for a given ``IDENTITY`` column, a process which SQLAlchemy performs
implicitly in many cases, most importantly within the ORM.
The process for fetching this value has several variants:
* In the vast majority of cases, RETURNING is used in conjunction with INSERT
statements on SQL Server in order to get newly generated primary key values:
.. sourcecode:: sql
INSERT INTO t (x) OUTPUT inserted.id VALUES (?)
* When RETURNING is not available or has been disabled via
``implicit_returning=False``, either the ``scope_identity()`` function or
the ``@@identity`` variable is used; behavior varies by backend:
* when using PyODBC, the phrase ``; select scope_identity()`` will be
appended to the end of the INSERT statement; a second result set will be
fetched in order to receive the value. Given a table as::
t = Table('t', m, Column('id', Integer, primary_key=True),
Column('x', Integer),
implicit_returning=False)
an INSERT will look like:
.. sourcecode:: sql
INSERT INTO t (x) VALUES (?); select scope_identity()
* Other dialects such as pymssql will call upon
``SELECT scope_identity() AS lastrowid`` subsequent to an INSERT
statement. If the flag ``use_scope_identity=False`` is passed to
:func:`_sa.create_engine`,
the statement ``SELECT @@identity AS lastrowid``
is used instead.
A table that contains an ``IDENTITY`` column will prohibit an INSERT statement
that refers to the identity column explicitly. The SQLAlchemy dialect will
detect when an INSERT construct, created using a core
:func:`_expression.insert`
construct (not a plain string SQL), refers to the identity column, and
in this case will emit ``SET IDENTITY_INSERT ON`` prior to the insert
statement proceeding, and ``SET IDENTITY_INSERT OFF`` subsequent to the
execution. Given this example::
m = MetaData()
t = Table('t', m, Column('id', Integer, primary_key=True),
Column('x', Integer))
m.create_all(engine)
with engine.begin() as conn:
conn.execute(t.insert(), {'id': 1, 'x':1}, {'id':2, 'x':2})
The above column will be created with IDENTITY, however the INSERT statement
we emit is specifying explicit values. In the echo output we can see
how SQLAlchemy handles this:
.. sourcecode:: sql
CREATE TABLE t (
id INTEGER NOT NULL IDENTITY(1,1),
x INTEGER NULL,
PRIMARY KEY (id)
)
COMMIT
SET IDENTITY_INSERT t ON
INSERT INTO t (id, x) VALUES (?, ?)
((1, 1), (2, 2))
SET IDENTITY_INSERT t OFF
COMMIT
This is an auxiliary use case suitable for testing and bulk insert scenarios.
SEQUENCE support
----------------
The :class:`.Sequence` object now creates "real" sequences, i.e.,
``CREATE SEQUENCE``. To provide compatibility with other dialects,
:class:`.Sequence` defaults to a start value of 1, even though the
T-SQL defaults is -9223372036854775808.
.. versionadded:: 1.4.0
MAX on VARCHAR / NVARCHAR
-------------------------
SQL Server supports the special string "MAX" within the
:class:`_types.VARCHAR` and :class:`_types.NVARCHAR` datatypes,
to indicate "maximum length possible". The dialect currently handles this as
a length of "None" in the base type, rather than supplying a
dialect-specific version of these types, so that a base type
specified such as ``VARCHAR(None)`` can assume "unlengthed" behavior on
more than one backend without using dialect-specific types.
To build a SQL Server VARCHAR or NVARCHAR with MAX length, use None::
my_table = Table(
'my_table', metadata,
Column('my_data', VARCHAR(None)),
Column('my_n_data', NVARCHAR(None))
)
Collation Support
-----------------
Character collations are supported by the base string types,
specified by the string argument "collation"::
from sqlalchemy import VARCHAR
Column('login', VARCHAR(32, collation='Latin1_General_CI_AS'))
When such a column is associated with a :class:`_schema.Table`, the
CREATE TABLE statement for this column will yield::
login VARCHAR(32) COLLATE Latin1_General_CI_AS NULL
LIMIT/OFFSET Support
--------------------
MSSQL has added support for LIMIT / OFFSET as of SQL Server 2012, via the
"OFFSET n ROWS" and "FETCH NEXT n ROWS" clauses. SQLAlchemy supports these
syntaxes automatically if SQL Server 2012 or greater is detected.
.. versionchanged:: 1.4 support added for SQL Server "OFFSET n ROWS" and
"FETCH NEXT n ROWS" syntax.
For statements that specify only LIMIT and no OFFSET, all versions of SQL
Server support the TOP keyword. This syntax is used for all SQL Server
versions when no OFFSET clause is present. A statement such as::
select(some_table).limit(5)
will render similarly to::
SELECT TOP 5 col1, col2.. FROM table
For versions of SQL Server prior to SQL Server 2012, a statement that uses
LIMIT and OFFSET, or just OFFSET alone, will be rendered using the
``ROW_NUMBER()`` window function. A statement such as::
select(some_table).order_by(some_table.c.col3).limit(5).offset(10)
will render similarly to::
SELECT anon_1.col1, anon_1.col2 FROM (SELECT col1, col2,
ROW_NUMBER() OVER (ORDER BY col3) AS
mssql_rn FROM table WHERE t.x = :x_1) AS
anon_1 WHERE mssql_rn > :param_1 AND mssql_rn <= :param_2 + :param_1
Note that when using LIMIT and/or OFFSET, whether using the older
or newer SQL Server syntaxes, the statement must have an ORDER BY as well,
else a :class:`.CompileError` is raised.
.. _mssql_isolation_level:
Transaction Isolation Level
---------------------------
All SQL Server dialects support setting of transaction isolation level
both via a dialect-specific parameter
:paramref:`_sa.create_engine.isolation_level`
accepted by :func:`_sa.create_engine`,
as well as the :paramref:`.Connection.execution_options.isolation_level`
argument as passed to
:meth:`_engine.Connection.execution_options`.
This feature works by issuing the
command ``SET TRANSACTION ISOLATION LEVEL <level>`` for
each new connection.
To set isolation level using :func:`_sa.create_engine`::
engine = create_engine(
"mssql+pyodbc://scott:tiger@ms_2008",
isolation_level="REPEATABLE READ"
)
To set using per-connection execution options::
connection = engine.connect()
connection = connection.execution_options(
isolation_level="READ COMMITTED"
)
Valid values for ``isolation_level`` include:
* ``AUTOCOMMIT`` - pyodbc / pymssql-specific
* ``READ COMMITTED``
* ``READ UNCOMMITTED``
* ``REPEATABLE READ``
* ``SERIALIZABLE``
* ``SNAPSHOT`` - specific to SQL Server
There are also more options for isolation level configurations, such as
"sub-engine" objects linked to a main :class:`_engine.Engine` which each apply
different isolation level settings. See the discussion at
:ref:`dbapi_autocommit` for background.
.. seealso::
:ref:`dbapi_autocommit`
Nullability
-----------
MSSQL has support for three levels of column nullability. The default
nullability allows nulls and is explicit in the CREATE TABLE
construct::
name VARCHAR(20) NULL
If ``nullable=None`` is specified then no specification is made. In
other words the database's configured default is used. This will
render::
name VARCHAR(20)
If ``nullable`` is ``True`` or ``False`` then the column will be
``NULL`` or ``NOT NULL`` respectively.
Date / Time Handling
--------------------
DATE and TIME are supported. Bind parameters are converted
to datetime.datetime() objects as required by most MSSQL drivers,
and results are processed from strings if needed.
The DATE and TIME types are not available for MSSQL 2005 and
previous - if a server version below 2008 is detected, DDL
for these types will be issued as DATETIME.
.. _mssql_large_type_deprecation:
Large Text/Binary Type Deprecation
----------------------------------
Per
`SQL Server 2012/2014 Documentation <https://technet.microsoft.com/en-us/library/ms187993.aspx>`_,
the ``NTEXT``, ``TEXT`` and ``IMAGE`` datatypes are to be removed from SQL
Server in a future release. SQLAlchemy normally relates these types to the
:class:`.UnicodeText`, :class:`_expression.TextClause` and
:class:`.LargeBinary` datatypes.
In order to accommodate this change, a new flag ``deprecate_large_types``
is added to the dialect, which will be automatically set based on detection
of the server version in use, if not otherwise set by the user. The
behavior of this flag is as follows:
* When this flag is ``True``, the :class:`.UnicodeText`,
:class:`_expression.TextClause` and
:class:`.LargeBinary` datatypes, when used to render DDL, will render the
types ``NVARCHAR(max)``, ``VARCHAR(max)``, and ``VARBINARY(max)``,
respectively. This is a new behavior as of the addition of this flag.
* When this flag is ``False``, the :class:`.UnicodeText`,
:class:`_expression.TextClause` and
:class:`.LargeBinary` datatypes, when used to render DDL, will render the
types ``NTEXT``, ``TEXT``, and ``IMAGE``,
respectively. This is the long-standing behavior of these types.
* The flag begins with the value ``None``, before a database connection is
established. If the dialect is used to render DDL without the flag being
set, it is interpreted the same as ``False``.
* On first connection, the dialect detects if SQL Server version 2012 or
greater is in use; if the flag is still at ``None``, it sets it to ``True``
or ``False`` based on whether 2012 or greater is detected.
* The flag can be set to either ``True`` or ``False`` when the dialect
is created, typically via :func:`_sa.create_engine`::
eng = create_engine("mssql+pymssql://user:pass@host/db",
deprecate_large_types=True)
* Complete control over whether the "old" or "new" types are rendered is
available in all SQLAlchemy versions by using the UPPERCASE type objects
instead: :class:`_types.NVARCHAR`, :class:`_types.VARCHAR`,
:class:`_types.VARBINARY`, :class:`_types.TEXT`, :class:`_mssql.NTEXT`,
:class:`_mssql.IMAGE`
will always remain fixed and always output exactly that
type.
.. versionadded:: 1.0.0
.. _multipart_schema_names:
Multipart Schema Names
----------------------
SQL Server schemas sometimes require multiple parts to their "schema"
qualifier, that is, including the database name and owner name as separate
tokens, such as ``mydatabase.dbo.some_table``. These multipart names can be set
at once using the :paramref:`_schema.Table.schema` argument of
:class:`_schema.Table`::
Table(
"some_table", metadata,
Column("q", String(50)),
schema="mydatabase.dbo"
)
When performing operations such as table or component reflection, a schema
argument that contains a dot will be split into separate
"database" and "owner" components in order to correctly query the SQL
Server information schema tables, as these two values are stored separately.
Additionally, when rendering the schema name for DDL or SQL, the two
components will be quoted separately for case sensitive names and other
special characters. Given an argument as below::
Table(
"some_table", metadata,
Column("q", String(50)),
schema="MyDataBase.dbo"
)
The above schema would be rendered as ``[MyDataBase].dbo``, and also in
reflection, would be reflected using "dbo" as the owner and "MyDataBase"
as the database name.
To control how the schema name is broken into database / owner,
specify brackets (which in SQL Server are quoting characters) in the name.
Below, the "owner" will be considered as ``MyDataBase.dbo`` and the
"database" will be None::
Table(
"some_table", metadata,
Column("q", String(50)),
schema="[MyDataBase.dbo]"
)
To individually specify both database and owner name with special characters
or embedded dots, use two sets of brackets::
Table(
"some_table", metadata,
Column("q", String(50)),
schema="[MyDataBase.Period].[MyOwner.Dot]"
)
.. versionchanged:: 1.2 the SQL Server dialect now treats brackets as
identifier delimiters splitting the schema into separate database
and owner tokens, to allow dots within either name itself.
.. _legacy_schema_rendering:
Legacy Schema Mode
------------------
Very old versions of the MSSQL dialect introduced the behavior such that a
schema-qualified table would be auto-aliased when used in a
SELECT statement; given a table::
account_table = Table(
'account', metadata,
Column('id', Integer, primary_key=True),
Column('info', String(100)),
schema="customer_schema"
)
this legacy mode of rendering would assume that "customer_schema.account"
would not be accepted by all parts of the SQL statement, as illustrated
below::
>>> eng = create_engine("mssql+pymssql://mydsn", legacy_schema_aliasing=True)
>>> print(account_table.select().compile(eng))
SELECT account_1.id, account_1.info
FROM customer_schema.account AS account_1
This mode of behavior is now off by default, as it appears to have served
no purpose; however in the case that legacy applications rely upon it,
it is available using the ``legacy_schema_aliasing`` argument to
:func:`_sa.create_engine` as illustrated above.
.. versionchanged:: 1.1 the ``legacy_schema_aliasing`` flag introduced
in version 1.0.5 to allow disabling of legacy mode for schemas now
defaults to False.
.. deprecated:: 1.4
The ``legacy_schema_aliasing`` flag is now
deprecated and will be removed in a future release.
.. _mssql_indexes:
Clustered Index Support
-----------------------
The MSSQL dialect supports clustered indexes (and primary keys) via the
``mssql_clustered`` option. This option is available to :class:`.Index`,
:class:`.UniqueConstraint`. and :class:`.PrimaryKeyConstraint`.
To generate a clustered index::
Index("my_index", table.c.x, mssql_clustered=True)
which renders the index as ``CREATE CLUSTERED INDEX my_index ON table (x)``.
To generate a clustered primary key use::
Table('my_table', metadata,
Column('x', ...),
Column('y', ...),
PrimaryKeyConstraint("x", "y", mssql_clustered=True))
which will render the table, for example, as::
CREATE TABLE my_table (x INTEGER NOT NULL, y INTEGER NOT NULL,
PRIMARY KEY CLUSTERED (x, y))
Similarly, we can generate a clustered unique constraint using::
Table('my_table', metadata,
Column('x', ...),
Column('y', ...),
PrimaryKeyConstraint("x"),
UniqueConstraint("y", mssql_clustered=True),
)
To explicitly request a non-clustered primary key (for example, when
a separate clustered index is desired), use::
Table('my_table', metadata,
Column('x', ...),
Column('y', ...),
PrimaryKeyConstraint("x", "y", mssql_clustered=False))
which will render the table, for example, as::
CREATE TABLE my_table (x INTEGER NOT NULL, y INTEGER NOT NULL,
PRIMARY KEY NONCLUSTERED (x, y))
.. versionchanged:: 1.1 the ``mssql_clustered`` option now defaults
to None, rather than False. ``mssql_clustered=False`` now explicitly
renders the NONCLUSTERED clause, whereas None omits the CLUSTERED
clause entirely, allowing SQL Server defaults to take effect.
MSSQL-Specific Index Options
-----------------------------
In addition to clustering, the MSSQL dialect supports other special options
for :class:`.Index`.
INCLUDE
^^^^^^^
The ``mssql_include`` option renders INCLUDE(colname) for the given string
names::
Index("my_index", table.c.x, mssql_include=['y'])
would render the index as ``CREATE INDEX my_index ON table (x) INCLUDE (y)``
.. _mssql_index_where:
Filtered Indexes
^^^^^^^^^^^^^^^^
The ``mssql_where`` option renders WHERE(condition) for the given string
names::
Index("my_index", table.c.x, mssql_where=table.c.x > 10)
would render the index as ``CREATE INDEX my_index ON table (x) WHERE x > 10``.
.. versionadded:: 1.3.4
Index ordering
^^^^^^^^^^^^^^
Index ordering is available via functional expressions, such as::
Index("my_index", table.c.x.desc())
would render the index as ``CREATE INDEX my_index ON table (x DESC)``
.. seealso::
:ref:`schema_indexes_functional`
Compatibility Levels
--------------------
MSSQL supports the notion of setting compatibility levels at the
database level. This allows, for instance, to run a database that
is compatible with SQL2000 while running on a SQL2005 database
server. ``server_version_info`` will always return the database
server version information (in this case SQL2005) and not the
compatibility level information. Because of this, if running under
a backwards compatibility mode SQLAlchemy may attempt to use T-SQL
statements that are unable to be parsed by the database server.
Triggers
--------
SQLAlchemy by default uses OUTPUT INSERTED to get at newly
generated primary key values via IDENTITY columns or other
server side defaults. MS-SQL does not
allow the usage of OUTPUT INSERTED on tables that have triggers.
To disable the usage of OUTPUT INSERTED on a per-table basis,
specify ``implicit_returning=False`` for each :class:`_schema.Table`
which has triggers::
Table('mytable', metadata,
Column('id', Integer, primary_key=True),
# ...,
implicit_returning=False
)
Declarative form::
class MyClass(Base):
# ...
__table_args__ = {'implicit_returning':False}
This option can also be specified engine-wide using the
``implicit_returning=False`` argument on :func:`_sa.create_engine`.
.. _mssql_rowcount_versioning:
Rowcount Support / ORM Versioning
---------------------------------
The SQL Server drivers may have limited ability to return the number
of rows updated from an UPDATE or DELETE statement.
As of this writing, the PyODBC driver is not able to return a rowcount when
OUTPUT INSERTED is used. This impacts the SQLAlchemy ORM's versioning feature
in many cases where server-side value generators are in use in that while the
versioning operations can succeed, the ORM cannot always check that an UPDATE
or DELETE statement matched the number of rows expected, which is how it
verifies that the version identifier matched. When this condition occurs, a
warning will be emitted but the operation will proceed.
The use of OUTPUT INSERTED can be disabled by setting the
:paramref:`_schema.Table.implicit_returning` flag to ``False`` on a particular
:class:`_schema.Table`, which in declarative looks like::
class MyTable(Base):
__tablename__ = 'mytable'
id = Column(Integer, primary_key=True)
stuff = Column(String(10))
timestamp = Column(TIMESTAMP(), default=text('DEFAULT'))
__mapper_args__ = {
'version_id_col': timestamp,
'version_id_generator': False,
}
__table_args__ = {
'implicit_returning': False
}
Enabling Snapshot Isolation
---------------------------
SQL Server has a default transaction
isolation mode that locks entire tables, and causes even mildly concurrent
applications to have long held locks and frequent deadlocks.
Enabling snapshot isolation for the database as a whole is recommended
for modern levels of concurrency support. This is accomplished via the
following ALTER DATABASE commands executed at the SQL prompt::
ALTER DATABASE MyDatabase SET ALLOW_SNAPSHOT_ISOLATION ON
ALTER DATABASE MyDatabase SET READ_COMMITTED_SNAPSHOT ON
Background on SQL Server snapshot isolation is available at
https://msdn.microsoft.com/en-us/library/ms175095.aspx.
""" # noqa
import codecs
import datetime
import operator
import re
from . import information_schema as ischema
from .json import JSON
from .json import JSONIndexType
from .json import JSONPathType
from ... import exc
from ... import Identity
from ... import schema as sa_schema
from ... import Sequence
from ... import sql
from ... import text
from ... import types as sqltypes
from ... import util
from ...engine import cursor as _cursor
from ...engine import default
from ...engine import reflection
from ...sql import coercions
from ...sql import compiler
from ...sql import elements
from ...sql import expression
from ...sql import func
from ...sql import quoted_name
from ...sql import roles
from ...sql import util as sql_util
from ...types import BIGINT
from ...types import BINARY
from ...types import CHAR
from ...types import DATE
from ...types import DATETIME
from ...types import DECIMAL
from ...types import FLOAT
from ...types import INTEGER
from ...types import NCHAR
from ...types import NUMERIC
from ...types import NVARCHAR
from ...types import SMALLINT
from ...types import TEXT
from ...types import VARCHAR
from ...util import compat
from ...util import update_wrapper
from ...util.langhelpers import public_factory
# https://sqlserverbuilds.blogspot.com/
MS_2017_VERSION = (14,)
MS_2016_VERSION = (13,)
MS_2014_VERSION = (12,)
MS_2012_VERSION = (11,)
MS_2008_VERSION = (10,)
MS_2005_VERSION = (9,)
MS_2000_VERSION = (8,)
RESERVED_WORDS = set(
[
"add",
"all",
"alter",
"and",
"any",
"as",
"asc",
"authorization",
"backup",
"begin",
"between",
"break",
"browse",
"bulk",
"by",
"cascade",
"case",
"check",
"checkpoint",
"close",
"clustered",
"coalesce",
"collate",
"column",
"commit",
"compute",
"constraint",
"contains",
"containstable",
"continue",
"convert",
"create",
"cross",
"current",
"current_date",
"current_time",
"current_timestamp",
"current_user",
"cursor",
"database",
"dbcc",
"deallocate",
"declare",
"default",
"delete",
"deny",
"desc",
"disk",
"distinct",
"distributed",
"double",
"drop",
"dump",
"else",
"end",
"errlvl",
"escape",
"except",
"exec",
"execute",
"exists",
"exit",
"external",
"fetch",
"file",
"fillfactor",
"for",
"foreign",
"freetext",
"freetexttable",
"from",
"full",
"function",
"goto",
"grant",
"group",
"having",
"holdlock",
"identity",
"identity_insert",
"identitycol",
"if",
"in",
"index",
"inner",
"insert",
"intersect",
"into",
"is",
"join",
"key",
"kill",
"left",
"like",
"lineno",
"load",
"merge",
"national",
"nocheck",
"nonclustered",
"not",
"null",
"nullif",
"of",
"off",
"offsets",
"on",
"open",
"opendatasource",
"openquery",
"openrowset",
"openxml",
"option",
"or",
"order",
"outer",
"over",
"percent",
"pivot",
"plan",
"precision",
"primary",
"print",
"proc",
"procedure",
"public",
"raiserror",
"read",
"readtext",
"reconfigure",
"references",
"replication",
"restore",
"restrict",
"return",
"revert",
"revoke",
"right",
"rollback",
"rowcount",
"rowguidcol",
"rule",
"save",
"schema",
"securityaudit",
"select",
"session_user",
"set",
"setuser",
"shutdown",
"some",
"statistics",
"system_user",
"table",
"tablesample",
"textsize",
"then",
"to",
"top",
"tran",
"transaction",
"trigger",
"truncate",
"tsequal",
"union",
"unique",
"unpivot",
"update",
"updatetext",
"use",
"user",
"values",
"varying",
"view",
"waitfor",
"when",
"where",
"while",
"with",
"writetext",
]
)
class REAL(sqltypes.REAL):
__visit_name__ = "REAL"
def __init__(self, **kw):
# REAL is a synonym for FLOAT(24) on SQL server.
# it is only accepted as the word "REAL" in DDL, the numeric
# precision value is not allowed to be present
kw.setdefault("precision", 24)
super(REAL, self).__init__(**kw)
class TINYINT(sqltypes.Integer):
__visit_name__ = "TINYINT"
# MSSQL DATE/TIME types have varied behavior, sometimes returning
# strings. MSDate/TIME check for everything, and always
# filter bind parameters into datetime objects (required by pyodbc,
# not sure about other dialects).
class _MSDate(sqltypes.Date):
def bind_processor(self, dialect):
def process(value):
if type(value) == datetime.date:
return datetime.datetime(value.year, value.month, value.day)
else:
return value
return process
_reg = re.compile(r"(\d+)-(\d+)-(\d+)")
def result_processor(self, dialect, coltype):
def process(value):
if isinstance(value, datetime.datetime):
return value.date()
elif isinstance(value, util.string_types):
m = self._reg.match(value)
if not m:
raise ValueError(
"could not parse %r as a date value" % (value,)
)
return datetime.date(*[int(x or 0) for x in m.groups()])
else:
return value
return process
class TIME(sqltypes.TIME):
def __init__(self, precision=None, **kwargs):
self.precision = precision
super(TIME, self).__init__()
__zero_date = datetime.date(1900, 1, 1)
def bind_processor(self, dialect):
def process(value):
if isinstance(value, datetime.datetime):
value = datetime.datetime.combine(
self.__zero_date, value.time()
)
elif isinstance(value, datetime.time):
"""issue #5339
per: https://github.com/mkleehammer/pyodbc/wiki/Tips-and-Tricks-by-Database-Platform#time-columns
pass TIME value as string
""" # noqa
value = str(value)
return value
return process
_reg = re.compile(r"(\d+):(\d+):(\d+)(?:\.(\d{0,6}))?")
def result_processor(self, dialect, coltype):
def process(value):
if isinstance(value, datetime.datetime):
return value.time()
elif isinstance(value, util.string_types):
m = self._reg.match(value)
if not m:
raise ValueError(
"could not parse %r as a time value" % (value,)
)
return datetime.time(*[int(x or 0) for x in m.groups()])
else:
return value
return process
_MSTime = TIME
class _BASETIMEIMPL(TIME):
__visit_name__ = "_BASETIMEIMPL"
class _DateTimeBase(object):
def bind_processor(self, dialect):
def process(value):
if type(value) == datetime.date:
return datetime.datetime(value.year, value.month, value.day)
else:
return value
return process
class _MSDateTime(_DateTimeBase, sqltypes.DateTime):
pass
class SMALLDATETIME(_DateTimeBase, sqltypes.DateTime):
__visit_name__ = "SMALLDATETIME"
class DATETIME2(_DateTimeBase, sqltypes.DateTime):
__visit_name__ = "DATETIME2"
def __init__(self, precision=None, **kw):
super(DATETIME2, self).__init__(**kw)
self.precision = precision
class DATETIMEOFFSET(_DateTimeBase, sqltypes.DateTime):
__visit_name__ = "DATETIMEOFFSET"
def __init__(self, precision=None, **kw):
super(DATETIMEOFFSET, self).__init__(**kw)
self.precision = precision
class _UnicodeLiteral(object):
def literal_processor(self, dialect):
def process(value):
value = value.replace("'", "''")
if dialect.identifier_preparer._double_percents:
value = value.replace("%", "%%")
return "N'%s'" % value
return process
class _MSUnicode(_UnicodeLiteral, sqltypes.Unicode):
pass
class _MSUnicodeText(_UnicodeLiteral, sqltypes.UnicodeText):
pass
class TIMESTAMP(sqltypes._Binary):
"""Implement the SQL Server TIMESTAMP type.
Note this is **completely different** than the SQL Standard
TIMESTAMP type, which is not supported by SQL Server. It
is a read-only datatype that does not support INSERT of values.
.. versionadded:: 1.2
.. seealso::
:class:`_mssql.ROWVERSION`
"""
__visit_name__ = "TIMESTAMP"
# expected by _Binary to be present
length = None
def __init__(self, convert_int=False):
"""Construct a TIMESTAMP or ROWVERSION type.
:param convert_int: if True, binary integer values will
be converted to integers on read.
.. versionadded:: 1.2
"""
self.convert_int = convert_int
def result_processor(self, dialect, coltype):
super_ = super(TIMESTAMP, self).result_processor(dialect, coltype)
if self.convert_int:
def process(value):
value = super_(value)
if value is not None:
# https://stackoverflow.com/a/30403242/34549
value = int(codecs.encode(value, "hex"), 16)
return value
return process
else:
return super_
class ROWVERSION(TIMESTAMP):
"""Implement the SQL Server ROWVERSION type.
The ROWVERSION datatype is a SQL Server synonym for the TIMESTAMP
datatype, however current SQL Server documentation suggests using
ROWVERSION for new datatypes going forward.
The ROWVERSION datatype does **not** reflect (e.g. introspect) from the
database as itself; the returned datatype will be
:class:`_mssql.TIMESTAMP`.
This is a read-only datatype that does not support INSERT of values.
.. versionadded:: 1.2
.. seealso::
:class:`_mssql.TIMESTAMP`
"""
__visit_name__ = "ROWVERSION"
class NTEXT(sqltypes.UnicodeText):
"""MSSQL NTEXT type, for variable-length unicode text up to 2^30
characters."""
__visit_name__ = "NTEXT"
class VARBINARY(sqltypes.VARBINARY, sqltypes.LargeBinary):
"""The MSSQL VARBINARY type.
This type adds additional features to the core :class:`_types.VARBINARY`
type, including "deprecate_large_types" mode where
either ``VARBINARY(max)`` or IMAGE is rendered, as well as the SQL
Server ``FILESTREAM`` option.
.. versionadded:: 1.0.0
.. seealso::
:ref:`mssql_large_type_deprecation`
"""
__visit_name__ = "VARBINARY"
def __init__(self, length=None, filestream=False):
"""
Construct a VARBINARY type.
:param length: optional, a length for the column for use in
DDL statements, for those binary types that accept a length,
such as the MySQL BLOB type.
:param filestream=False: if True, renders the ``FILESTREAM`` keyword
in the table definition. In this case ``length`` must be ``None``
or ``'max'``.
.. versionadded:: 1.4.31
"""
self.filestream = filestream
if self.filestream and length not in (None, "max"):
raise ValueError(
"length must be None or 'max' when setting filestream"
)
super(VARBINARY, self).__init__(length=length)
class IMAGE(sqltypes.LargeBinary):
__visit_name__ = "IMAGE"
class XML(sqltypes.Text):
"""MSSQL XML type.
This is a placeholder type for reflection purposes that does not include
any Python-side datatype support. It also does not currently support
additional arguments, such as "CONTENT", "DOCUMENT",
"xml_schema_collection".
.. versionadded:: 1.1.11
"""
__visit_name__ = "XML"
class BIT(sqltypes.Boolean):
"""MSSQL BIT type.
Both pyodbc and pymssql return values from BIT columns as
Python <class 'bool'> so just subclass Boolean.
"""
__visit_name__ = "BIT"
class MONEY(sqltypes.TypeEngine):
__visit_name__ = "MONEY"
class SMALLMONEY(sqltypes.TypeEngine):
__visit_name__ = "SMALLMONEY"
class UNIQUEIDENTIFIER(sqltypes.TypeEngine):
__visit_name__ = "UNIQUEIDENTIFIER"
class SQL_VARIANT(sqltypes.TypeEngine):
__visit_name__ = "SQL_VARIANT"
class TryCast(sql.elements.Cast):
"""Represent a SQL Server TRY_CAST expression."""
__visit_name__ = "try_cast"
stringify_dialect = "mssql"
inherit_cache = True
def __init__(self, *arg, **kw):
"""Create a TRY_CAST expression.
:class:`.TryCast` is a subclass of SQLAlchemy's :class:`.Cast`
construct, and works in the same way, except that the SQL expression
rendered is "TRY_CAST" rather than "CAST"::
from sqlalchemy import select
from sqlalchemy import Numeric
from sqlalchemy.dialects.mssql import try_cast
stmt = select(
try_cast(product_table.c.unit_price, Numeric(10, 4))
)
The above would render::
SELECT TRY_CAST (product_table.unit_price AS NUMERIC(10, 4))
FROM product_table
.. versionadded:: 1.3.7
"""
super(TryCast, self).__init__(*arg, **kw)
try_cast = public_factory(TryCast, ".dialects.mssql.try_cast")
# old names.
MSDateTime = _MSDateTime
MSDate = _MSDate
MSReal = REAL
MSTinyInteger = TINYINT
MSTime = TIME
MSSmallDateTime = SMALLDATETIME
MSDateTime2 = DATETIME2
MSDateTimeOffset = DATETIMEOFFSET
MSText = TEXT
MSNText = NTEXT
MSString = VARCHAR
MSNVarchar = NVARCHAR
MSChar = CHAR
MSNChar = NCHAR
MSBinary = BINARY
MSVarBinary = VARBINARY
MSImage = IMAGE
MSBit = BIT
MSMoney = MONEY
MSSmallMoney = SMALLMONEY
MSUniqueIdentifier = UNIQUEIDENTIFIER
MSVariant = SQL_VARIANT
ischema_names = {
"int": INTEGER,
"bigint": BIGINT,
"smallint": SMALLINT,
"tinyint": TINYINT,
"varchar": VARCHAR,
"nvarchar": NVARCHAR,
"char": CHAR,
"nchar": NCHAR,
"text": TEXT,
"ntext": NTEXT,
"decimal": DECIMAL,
"numeric": NUMERIC,
"float": FLOAT,
"datetime": DATETIME,
"datetime2": DATETIME2,
"datetimeoffset": DATETIMEOFFSET,
"date": DATE,
"time": TIME,
"smalldatetime": SMALLDATETIME,
"binary": BINARY,
"varbinary": VARBINARY,
"bit": BIT,
"real": REAL,
"image": IMAGE,
"xml": XML,
"timestamp": TIMESTAMP,
"money": MONEY,
"smallmoney": SMALLMONEY,
"uniqueidentifier": UNIQUEIDENTIFIER,
"sql_variant": SQL_VARIANT,
}
class MSTypeCompiler(compiler.GenericTypeCompiler):
def _extend(self, spec, type_, length=None):
"""Extend a string-type declaration with standard SQL
COLLATE annotations.
"""
if getattr(type_, "collation", None):
collation = "COLLATE %s" % type_.collation
else:
collation = None
if not length:
length = type_.length
if length:
spec = spec + "(%s)" % length
return " ".join([c for c in (spec, collation) if c is not None])
def visit_FLOAT(self, type_, **kw):
precision = getattr(type_, "precision", None)
if precision is None:
return "FLOAT"
else:
return "FLOAT(%(precision)s)" % {"precision": precision}
def visit_TINYINT(self, type_, **kw):
return "TINYINT"
def visit_TIME(self, type_, **kw):
precision = getattr(type_, "precision", None)
if precision is not None:
return "TIME(%s)" % precision
else:
return "TIME"
def visit_TIMESTAMP(self, type_, **kw):
return "TIMESTAMP"
def visit_ROWVERSION(self, type_, **kw):
return "ROWVERSION"
def visit_datetime(self, type_, **kw):
if type_.timezone:
return self.visit_DATETIMEOFFSET(type_, **kw)
else:
return self.visit_DATETIME(type_, **kw)
def visit_DATETIMEOFFSET(self, type_, **kw):
precision = getattr(type_, "precision", None)
if precision is not None:
return "DATETIMEOFFSET(%s)" % type_.precision
else:
return "DATETIMEOFFSET"
def visit_DATETIME2(self, type_, **kw):
precision = getattr(type_, "precision", None)
if precision is not None:
return "DATETIME2(%s)" % precision
else:
return "DATETIME2"
def visit_SMALLDATETIME(self, type_, **kw):
return "SMALLDATETIME"
def visit_unicode(self, type_, **kw):
return self.visit_NVARCHAR(type_, **kw)
def visit_text(self, type_, **kw):
if self.dialect.deprecate_large_types:
return self.visit_VARCHAR(type_, **kw)
else:
return self.visit_TEXT(type_, **kw)
def visit_unicode_text(self, type_, **kw):
if self.dialect.deprecate_large_types:
return self.visit_NVARCHAR(type_, **kw)
else:
return self.visit_NTEXT(type_, **kw)
def visit_NTEXT(self, type_, **kw):
return self._extend("NTEXT", type_)
def visit_TEXT(self, type_, **kw):
return self._extend("TEXT", type_)
def visit_VARCHAR(self, type_, **kw):
return self._extend("VARCHAR", type_, length=type_.length or "max")
def visit_CHAR(self, type_, **kw):
return self._extend("CHAR", type_)
def visit_NCHAR(self, type_, **kw):
return self._extend("NCHAR", type_)
def visit_NVARCHAR(self, type_, **kw):
return self._extend("NVARCHAR", type_, length=type_.length or "max")
def visit_date(self, type_, **kw):
if self.dialect.server_version_info < MS_2008_VERSION:
return self.visit_DATETIME(type_, **kw)
else:
return self.visit_DATE(type_, **kw)
def visit__BASETIMEIMPL(self, type_, **kw):
return self.visit_time(type_, **kw)
def visit_time(self, type_, **kw):
if self.dialect.server_version_info < MS_2008_VERSION:
return self.visit_DATETIME(type_, **kw)
else:
return self.visit_TIME(type_, **kw)
def visit_large_binary(self, type_, **kw):
if self.dialect.deprecate_large_types:
return self.visit_VARBINARY(type_, **kw)
else:
return self.visit_IMAGE(type_, **kw)
def visit_IMAGE(self, type_, **kw):
return "IMAGE"
def visit_XML(self, type_, **kw):
return "XML"
def visit_VARBINARY(self, type_, **kw):
text = self._extend("VARBINARY", type_, length=type_.length or "max")
if getattr(type_, "filestream", False):
text += " FILESTREAM"
return text
def visit_boolean(self, type_, **kw):
return self.visit_BIT(type_)
def visit_BIT(self, type_, **kw):
return "BIT"
def visit_JSON(self, type_, **kw):
# this is a bit of a break with SQLAlchemy's convention of
# "UPPERCASE name goes to UPPERCASE type name with no modification"
return self._extend("NVARCHAR", type_, length="max")
def visit_MONEY(self, type_, **kw):
return "MONEY"
def visit_SMALLMONEY(self, type_, **kw):
return "SMALLMONEY"
def visit_UNIQUEIDENTIFIER(self, type_, **kw):
return "UNIQUEIDENTIFIER"
def visit_SQL_VARIANT(self, type_, **kw):
return "SQL_VARIANT"
class MSExecutionContext(default.DefaultExecutionContext):
_enable_identity_insert = False
_select_lastrowid = False
_lastrowid = None
_rowcount = None
def _opt_encode(self, statement):
if not self.dialect.supports_unicode_statements:
encoded = self.dialect._encoder(statement)[0]
else:
encoded = statement
if self.compiled and self.compiled.schema_translate_map:
rst = self.compiled.preparer._render_schema_translates
encoded = rst(encoded, self.compiled.schema_translate_map)
return encoded
def pre_exec(self):
"""Activate IDENTITY_INSERT if needed."""
if self.isinsert:
tbl = self.compiled.compile_state.dml_table
id_column = tbl._autoincrement_column
insert_has_identity = (id_column is not None) and (
not isinstance(id_column.default, Sequence)
)
if insert_has_identity:
compile_state = self.compiled.dml_compile_state
self._enable_identity_insert = (
id_column.key in self.compiled_parameters[0]
) or (
compile_state._dict_parameters
and (id_column.key in compile_state._insert_col_keys)
)
else:
self._enable_identity_insert = False
self._select_lastrowid = (
not self.compiled.inline
and insert_has_identity
and not self.compiled.returning
and not self._enable_identity_insert
and not self.executemany
)
if self._enable_identity_insert:
self.root_connection._cursor_execute(
self.cursor,
self._opt_encode(
"SET IDENTITY_INSERT %s ON"
% self.identifier_preparer.format_table(tbl)
),
(),
self,
)
def post_exec(self):
"""Disable IDENTITY_INSERT if enabled."""
conn = self.root_connection
if self.isinsert or self.isupdate or self.isdelete:
self._rowcount = self.cursor.rowcount
if self._select_lastrowid:
if self.dialect.use_scope_identity:
conn._cursor_execute(
self.cursor,
"SELECT scope_identity() AS lastrowid",
(),
self,
)
else:
conn._cursor_execute(
self.cursor, "SELECT @@identity AS lastrowid", (), self
)
# fetchall() ensures the cursor is consumed without closing it
row = self.cursor.fetchall()[0]
self._lastrowid = int(row[0])
elif (
self.isinsert or self.isupdate or self.isdelete
) and self.compiled.returning:
self.cursor_fetch_strategy = (
_cursor.FullyBufferedCursorFetchStrategy(
self.cursor,
self.cursor.description,
self.cursor.fetchall(),
)
)
if self._enable_identity_insert:
conn._cursor_execute(
self.cursor,
self._opt_encode(
"SET IDENTITY_INSERT %s OFF"
% self.identifier_preparer.format_table(
self.compiled.compile_state.dml_table
)
),
(),
self,
)
def get_lastrowid(self):
return self._lastrowid
@property
def rowcount(self):
if self._rowcount is not None:
return self._rowcount
else:
return self.cursor.rowcount
def handle_dbapi_exception(self, e):
if self._enable_identity_insert:
try:
self.cursor.execute(
self._opt_encode(
"SET IDENTITY_INSERT %s OFF"
% self.identifier_preparer.format_table(
self.compiled.compile_state.dml_table
)
)
)
except Exception:
pass
def fire_sequence(self, seq, type_):
return self._execute_scalar(
(
"SELECT NEXT VALUE FOR %s"
% self.identifier_preparer.format_sequence(seq)
),
type_,
)
def get_insert_default(self, column):
if (
isinstance(column, sa_schema.Column)
and column is column.table._autoincrement_column
and isinstance(column.default, sa_schema.Sequence)
and column.default.optional
):
return None
return super(MSExecutionContext, self).get_insert_default(column)
class MSSQLCompiler(compiler.SQLCompiler):
returning_precedes_values = True
extract_map = util.update_copy(
compiler.SQLCompiler.extract_map,
{
"doy": "dayofyear",
"dow": "weekday",
"milliseconds": "millisecond",
"microseconds": "microsecond",
},
)
def __init__(self, *args, **kwargs):
self.tablealiases = {}
super(MSSQLCompiler, self).__init__(*args, **kwargs)
def _with_legacy_schema_aliasing(fn):
def decorate(self, *arg, **kw):
if self.dialect.legacy_schema_aliasing:
return fn(self, *arg, **kw)
else:
super_ = getattr(super(MSSQLCompiler, self), fn.__name__)
return super_(*arg, **kw)
return decorate
def visit_now_func(self, fn, **kw):
return "CURRENT_TIMESTAMP"
def visit_current_date_func(self, fn, **kw):
return "GETDATE()"
def visit_length_func(self, fn, **kw):
return "LEN%s" % self.function_argspec(fn, **kw)
def visit_char_length_func(self, fn, **kw):
return "LEN%s" % self.function_argspec(fn, **kw)
def visit_concat_op_binary(self, binary, operator, **kw):
return "%s + %s" % (
self.process(binary.left, **kw),
self.process(binary.right, **kw),
)
def visit_true(self, expr, **kw):
return "1"
def visit_false(self, expr, **kw):
return "0"
def visit_match_op_binary(self, binary, operator, **kw):
return "CONTAINS (%s, %s)" % (
self.process(binary.left, **kw),
self.process(binary.right, **kw),
)
def get_select_precolumns(self, select, **kw):
"""MS-SQL puts TOP, it's version of LIMIT here"""
s = super(MSSQLCompiler, self).get_select_precolumns(select, **kw)
if select._has_row_limiting_clause and self._use_top(select):
# ODBC drivers and possibly others
# don't support bind params in the SELECT clause on SQL Server.
# so have to use literal here.
kw["literal_execute"] = True
s += "TOP %s " % self.process(
self._get_limit_or_fetch(select), **kw
)
if select._fetch_clause is not None:
if select._fetch_clause_options["percent"]:
s += "PERCENT "
if select._fetch_clause_options["with_ties"]:
s += "WITH TIES "
return s
def get_from_hint_text(self, table, text):
return text
def get_crud_hint_text(self, table, text):
return text
def _get_limit_or_fetch(self, select):
if select._fetch_clause is None:
return select._limit_clause
else:
return select._fetch_clause
def _use_top(self, select):
return (select._offset_clause is None) and (
select._simple_int_clause(select._limit_clause)
or (
# limit can use TOP with is by itself. fetch only uses TOP
# when it needs to because of PERCENT and/or WITH TIES
select._simple_int_clause(select._fetch_clause)
and (
select._fetch_clause_options["percent"]
or select._fetch_clause_options["with_ties"]
)
)
)
def fetch_clause(self, cs, **kwargs):
return ""
def limit_clause(self, cs, **kwargs):
return ""
def _check_can_use_fetch_limit(self, select):
# to use ROW_NUMBER(), an ORDER BY is required.
# OFFSET are FETCH are options of the ORDER BY clause
if not select._order_by_clause.clauses:
raise exc.CompileError(
"MSSQL requires an order_by when "
"using an OFFSET or a non-simple "
"LIMIT clause"
)
if select._fetch_clause_options is not None and (
select._fetch_clause_options["percent"]
or select._fetch_clause_options["with_ties"]
):
raise exc.CompileError(
"MSSQL needs TOP to use PERCENT and/or WITH TIES. "
"Only simple fetch without offset can be used."
)
def _row_limit_clause(self, select, **kw):
"""MSSQL 2012 supports OFFSET/FETCH operators
Use it instead subquery with row_number
"""
if self.dialect._supports_offset_fetch and not self._use_top(select):
self._check_can_use_fetch_limit(select)
text = ""
if select._offset_clause is not None:
offset_str = self.process(select._offset_clause, **kw)
else:
offset_str = "0"
text += "\n OFFSET %s ROWS" % offset_str
limit = self._get_limit_or_fetch(select)
if limit is not None:
text += "\n FETCH FIRST %s ROWS ONLY" % self.process(
limit, **kw
)
return text
else:
return ""
def visit_try_cast(self, element, **kw):
return "TRY_CAST (%s AS %s)" % (
self.process(element.clause, **kw),
self.process(element.typeclause, **kw),
)
def translate_select_structure(self, select_stmt, **kwargs):
"""Look for ``LIMIT`` and OFFSET in a select statement, and if
so tries to wrap it in a subquery with ``row_number()`` criterion.
MSSQL 2012 and above are excluded
"""
select = select_stmt
if (
select._has_row_limiting_clause
and not self.dialect._supports_offset_fetch
and not self._use_top(select)
and not getattr(select, "_mssql_visit", None)
):
self._check_can_use_fetch_limit(select)
_order_by_clauses = [
sql_util.unwrap_label_reference(elem)
for elem in select._order_by_clause.clauses
]
limit_clause = self._get_limit_or_fetch(select)
offset_clause = select._offset_clause
select = select._generate()
select._mssql_visit = True
select = (
select.add_columns(
sql.func.ROW_NUMBER()
.over(order_by=_order_by_clauses)
.label("mssql_rn")
)
.order_by(None)
.alias()
)
mssql_rn = sql.column("mssql_rn")
limitselect = sql.select(
*[c for c in select.c if c.key != "mssql_rn"]
)
if offset_clause is not None:
limitselect = limitselect.where(mssql_rn > offset_clause)
if limit_clause is not None:
limitselect = limitselect.where(
mssql_rn <= (limit_clause + offset_clause)
)
else:
limitselect = limitselect.where(mssql_rn <= (limit_clause))
return limitselect
else:
return select
@_with_legacy_schema_aliasing
def visit_table(self, table, mssql_aliased=False, iscrud=False, **kwargs):
if mssql_aliased is table or iscrud:
return super(MSSQLCompiler, self).visit_table(table, **kwargs)
# alias schema-qualified tables
alias = self._schema_aliased_table(table)
if alias is not None:
return self.process(alias, mssql_aliased=table, **kwargs)
else:
return super(MSSQLCompiler, self).visit_table(table, **kwargs)
@_with_legacy_schema_aliasing
def visit_alias(self, alias, **kw):
# translate for schema-qualified table aliases
kw["mssql_aliased"] = alias.element
return super(MSSQLCompiler, self).visit_alias(alias, **kw)
@_with_legacy_schema_aliasing
def visit_column(self, column, add_to_result_map=None, **kw):
if (
column.table is not None
and (not self.isupdate and not self.isdelete)
or self.is_subquery()
):
# translate for schema-qualified table aliases
t = self._schema_aliased_table(column.table)
if t is not None:
converted = elements._corresponding_column_or_error(t, column)
if add_to_result_map is not None:
add_to_result_map(
column.name,
column.name,
(column, column.name, column.key),
column.type,
)
return super(MSSQLCompiler, self).visit_column(converted, **kw)
return super(MSSQLCompiler, self).visit_column(
column, add_to_result_map=add_to_result_map, **kw
)
def _schema_aliased_table(self, table):
if getattr(table, "schema", None) is not None:
if table not in self.tablealiases:
self.tablealiases[table] = table.alias()
return self.tablealiases[table]
else:
return None
def visit_extract(self, extract, **kw):
field = self.extract_map.get(extract.field, extract.field)
return "DATEPART(%s, %s)" % (field, self.process(extract.expr, **kw))
def visit_savepoint(self, savepoint_stmt):
return "SAVE TRANSACTION %s" % self.preparer.format_savepoint(
savepoint_stmt
)
def visit_rollback_to_savepoint(self, savepoint_stmt):
return "ROLLBACK TRANSACTION %s" % self.preparer.format_savepoint(
savepoint_stmt
)
def visit_binary(self, binary, **kwargs):
"""Move bind parameters to the right-hand side of an operator, where
possible.
"""
if (
isinstance(binary.left, expression.BindParameter)
and binary.operator == operator.eq
and not isinstance(binary.right, expression.BindParameter)
):
return self.process(
expression.BinaryExpression(
binary.right, binary.left, binary.operator
),
**kwargs
)
return super(MSSQLCompiler, self).visit_binary(binary, **kwargs)
def returning_clause(self, stmt, returning_cols):
# SQL server returning clause requires that the columns refer to
# the virtual table names "inserted" or "deleted". Here, we make
# a simple alias of our table with that name, and then adapt the
# columns we have from the list of RETURNING columns to that new name
# so that they render as "inserted.<colname>" / "deleted.<colname>".
if self.isinsert or self.isupdate:
target = stmt.table.alias("inserted")
else:
target = stmt.table.alias("deleted")
adapter = sql_util.ClauseAdapter(target)
# adapter.traverse() takes a column from our target table and returns
# the one that is linked to the "inserted" / "deleted" tables. So in
# order to retrieve these values back from the result (e.g. like
# row[column]), tell the compiler to also add the original unadapted
# column to the result map. Before #4877, these were (unknowingly)
# falling back using string name matching in the result set which
# necessarily used an expensive KeyError in order to match.
columns = [
self._label_returning_column(
stmt,
adapter.traverse(c),
{"result_map_targets": (c,)},
)
for c in expression._select_iterables(returning_cols)
]
return "OUTPUT " + ", ".join(columns)
def get_cte_preamble(self, recursive):
# SQL Server finds it too inconvenient to accept
# an entirely optional, SQL standard specified,
# "RECURSIVE" word with their "WITH",
# so here we go
return "WITH"
def label_select_column(self, select, column, asfrom):
if isinstance(column, expression.Function):
return column.label(None)
else:
return super(MSSQLCompiler, self).label_select_column(
select, column, asfrom
)
def for_update_clause(self, select, **kw):
# "FOR UPDATE" is only allowed on "DECLARE CURSOR" which
# SQLAlchemy doesn't use
return ""
def order_by_clause(self, select, **kw):
# MSSQL only allows ORDER BY in subqueries if there is a LIMIT
if (
self.is_subquery()
and not select._limit
and (
select._offset is None
or not self.dialect._supports_offset_fetch
)
):
# avoid processing the order by clause if we won't end up
# using it, because we don't want all the bind params tacked
# onto the positional list if that is what the dbapi requires
return ""
order_by = self.process(select._order_by_clause, **kw)
if order_by:
return " ORDER BY " + order_by
else:
return ""
def update_from_clause(
self, update_stmt, from_table, extra_froms, from_hints, **kw
):
"""Render the UPDATE..FROM clause specific to MSSQL.
In MSSQL, if the UPDATE statement involves an alias of the table to
be updated, then the table itself must be added to the FROM list as
well. Otherwise, it is optional. Here, we add it regardless.
"""
return "FROM " + ", ".join(
t._compiler_dispatch(self, asfrom=True, fromhints=from_hints, **kw)
for t in [from_table] + extra_froms
)
def delete_table_clause(self, delete_stmt, from_table, extra_froms):
"""If we have extra froms make sure we render any alias as hint."""
ashint = False
if extra_froms:
ashint = True
return from_table._compiler_dispatch(
self, asfrom=True, iscrud=True, ashint=ashint
)
def delete_extra_from_clause(
self, delete_stmt, from_table, extra_froms, from_hints, **kw
):
"""Render the DELETE .. FROM clause specific to MSSQL.
Yes, it has the FROM keyword twice.
"""
return "FROM " + ", ".join(
t._compiler_dispatch(self, asfrom=True, fromhints=from_hints, **kw)
for t in [from_table] + extra_froms
)
def visit_empty_set_expr(self, type_):
return "SELECT 1 WHERE 1!=1"
def visit_is_distinct_from_binary(self, binary, operator, **kw):
return "NOT EXISTS (SELECT %s INTERSECT SELECT %s)" % (
self.process(binary.left),
self.process(binary.right),
)
def visit_is_not_distinct_from_binary(self, binary, operator, **kw):
return "EXISTS (SELECT %s INTERSECT SELECT %s)" % (
self.process(binary.left),
self.process(binary.right),
)
def _render_json_extract_from_binary(self, binary, operator, **kw):
# note we are intentionally calling upon the process() calls in the
# order in which they appear in the SQL String as this is used
# by positional parameter rendering
if binary.type._type_affinity is sqltypes.JSON:
return "JSON_QUERY(%s, %s)" % (
self.process(binary.left, **kw),
self.process(binary.right, **kw),
)
# as with other dialects, start with an explicit test for NULL
case_expression = "CASE JSON_VALUE(%s, %s) WHEN NULL THEN NULL" % (
self.process(binary.left, **kw),
self.process(binary.right, **kw),
)
if binary.type._type_affinity is sqltypes.Integer:
type_expression = "ELSE CAST(JSON_VALUE(%s, %s) AS INTEGER)" % (
self.process(binary.left, **kw),
self.process(binary.right, **kw),
)
elif binary.type._type_affinity is sqltypes.Numeric:
type_expression = "ELSE CAST(JSON_VALUE(%s, %s) AS %s)" % (
self.process(binary.left, **kw),
self.process(binary.right, **kw),
"FLOAT"
if isinstance(binary.type, sqltypes.Float)
else "NUMERIC(%s, %s)"
% (binary.type.precision, binary.type.scale),
)
elif binary.type._type_affinity is sqltypes.Boolean:
# the NULL handling is particularly weird with boolean, so
# explicitly return numeric (BIT) constants
type_expression = (
"WHEN 'true' THEN 1 WHEN 'false' THEN 0 ELSE NULL"
)
elif binary.type._type_affinity is sqltypes.String:
# TODO: does this comment (from mysql) apply to here, too?
# this fails with a JSON value that's a four byte unicode
# string. SQLite has the same problem at the moment
type_expression = "ELSE JSON_VALUE(%s, %s)" % (
self.process(binary.left, **kw),
self.process(binary.right, **kw),
)
else:
# other affinity....this is not expected right now
type_expression = "ELSE JSON_QUERY(%s, %s)" % (
self.process(binary.left, **kw),
self.process(binary.right, **kw),
)
return case_expression + " " + type_expression + " END"
def visit_json_getitem_op_binary(self, binary, operator, **kw):
return self._render_json_extract_from_binary(binary, operator, **kw)
def visit_json_path_getitem_op_binary(self, binary, operator, **kw):
return self._render_json_extract_from_binary(binary, operator, **kw)
def visit_sequence(self, seq, **kw):
return "NEXT VALUE FOR %s" % self.preparer.format_sequence(seq)
class MSSQLStrictCompiler(MSSQLCompiler):
"""A subclass of MSSQLCompiler which disables the usage of bind
parameters where not allowed natively by MS-SQL.
A dialect may use this compiler on a platform where native
binds are used.
"""
ansi_bind_rules = True
def visit_in_op_binary(self, binary, operator, **kw):
kw["literal_execute"] = True
return "%s IN %s" % (
self.process(binary.left, **kw),
self.process(binary.right, **kw),
)
def visit_not_in_op_binary(self, binary, operator, **kw):
kw["literal_execute"] = True
return "%s NOT IN %s" % (
self.process(binary.left, **kw),
self.process(binary.right, **kw),
)
def render_literal_value(self, value, type_):
"""
For date and datetime values, convert to a string
format acceptable to MSSQL. That seems to be the
so-called ODBC canonical date format which looks
like this:
yyyy-mm-dd hh:mi:ss.mmm(24h)
For other data types, call the base class implementation.
"""
# datetime and date are both subclasses of datetime.date
if issubclass(type(value), datetime.date):
# SQL Server wants single quotes around the date string.
return "'" + str(value) + "'"
else:
return super(MSSQLStrictCompiler, self).render_literal_value(
value, type_
)
class MSDDLCompiler(compiler.DDLCompiler):
def get_column_specification(self, column, **kwargs):
colspec = self.preparer.format_column(column)
# type is not accepted in a computed column
if column.computed is not None:
colspec += " " + self.process(column.computed)
else:
colspec += " " + self.dialect.type_compiler.process(
column.type, type_expression=column
)
if column.nullable is not None:
if (
not column.nullable
or column.primary_key
or isinstance(column.default, sa_schema.Sequence)
or column.autoincrement is True
or column.identity
):
colspec += " NOT NULL"
elif column.computed is None:
# don't specify "NULL" for computed columns
colspec += " NULL"
if column.table is None:
raise exc.CompileError(
"mssql requires Table-bound columns "
"in order to generate DDL"
)
d_opt = column.dialect_options["mssql"]
start = d_opt["identity_start"]
increment = d_opt["identity_increment"]
if start is not None or increment is not None:
if column.identity:
raise exc.CompileError(
"Cannot specify options 'mssql_identity_start' and/or "
"'mssql_identity_increment' while also using the "
"'Identity' construct."
)
util.warn_deprecated(
"The dialect options 'mssql_identity_start' and "
"'mssql_identity_increment' are deprecated. "
"Use the 'Identity' object instead.",
"1.4",
)
if column.identity:
colspec += self.process(column.identity, **kwargs)
elif (
column is column.table._autoincrement_column
or column.autoincrement is True
) and (
not isinstance(column.default, Sequence) or column.default.optional
):
colspec += self.process(Identity(start=start, increment=increment))
else:
default = self.get_column_default_string(column)
if default is not None:
colspec += " DEFAULT " + default
return colspec
def visit_create_index(self, create, include_schema=False):
index = create.element
self._verify_index_table(index)
preparer = self.preparer
text = "CREATE "
if index.unique:
text += "UNIQUE "
# handle clustering option
clustered = index.dialect_options["mssql"]["clustered"]
if clustered is not None:
if clustered:
text += "CLUSTERED "
else:
text += "NONCLUSTERED "
text += "INDEX %s ON %s (%s)" % (
self._prepared_index_name(index, include_schema=include_schema),
preparer.format_table(index.table),
", ".join(
self.sql_compiler.process(
expr, include_table=False, literal_binds=True
)
for expr in index.expressions
),
)
# handle other included columns
if index.dialect_options["mssql"]["include"]:
inclusions = [
index.table.c[col]
if isinstance(col, util.string_types)
else col
for col in index.dialect_options["mssql"]["include"]
]
text += " INCLUDE (%s)" % ", ".join(
[preparer.quote(c.name) for c in inclusions]
)
whereclause = index.dialect_options["mssql"]["where"]
if whereclause is not None:
whereclause = coercions.expect(
roles.DDLExpressionRole, whereclause
)
where_compiled = self.sql_compiler.process(
whereclause, include_table=False, literal_binds=True
)
text += " WHERE " + where_compiled
return text
def visit_drop_index(self, drop):
return "\nDROP INDEX %s ON %s" % (
self._prepared_index_name(drop.element, include_schema=False),
self.preparer.format_table(drop.element.table),
)
def visit_primary_key_constraint(self, constraint):
if len(constraint) == 0:
return ""
text = ""
if constraint.name is not None:
text += "CONSTRAINT %s " % self.preparer.format_constraint(
constraint
)
text += "PRIMARY KEY "
clustered = constraint.dialect_options["mssql"]["clustered"]
if clustered is not None:
if clustered:
text += "CLUSTERED "
else:
text += "NONCLUSTERED "
text += "(%s)" % ", ".join(
self.preparer.quote(c.name) for c in constraint
)
text += self.define_constraint_deferrability(constraint)
return text
def visit_unique_constraint(self, constraint):
if len(constraint) == 0:
return ""
text = ""
if constraint.name is not None:
formatted_name = self.preparer.format_constraint(constraint)
if formatted_name is not None:
text += "CONSTRAINT %s " % formatted_name
text += "UNIQUE "
clustered = constraint.dialect_options["mssql"]["clustered"]
if clustered is not None:
if clustered:
text += "CLUSTERED "
else:
text += "NONCLUSTERED "
text += "(%s)" % ", ".join(
self.preparer.quote(c.name) for c in constraint
)
text += self.define_constraint_deferrability(constraint)
return text
def visit_computed_column(self, generated):
text = "AS (%s)" % self.sql_compiler.process(
generated.sqltext, include_table=False, literal_binds=True
)
# explicitly check for True|False since None means server default
if generated.persisted is True:
text += " PERSISTED"
return text
def visit_create_sequence(self, create, **kw):
prefix = None
if create.element.data_type is not None:
data_type = create.element.data_type
prefix = " AS %s" % self.type_compiler.process(data_type)
return super(MSDDLCompiler, self).visit_create_sequence(
create, prefix=prefix, **kw
)
def visit_identity_column(self, identity, **kw):
text = " IDENTITY"
if identity.start is not None or identity.increment is not None:
start = 1 if identity.start is None else identity.start
increment = 1 if identity.increment is None else identity.increment
text += "(%s,%s)" % (start, increment)
return text
class MSIdentifierPreparer(compiler.IdentifierPreparer):
reserved_words = RESERVED_WORDS
def __init__(self, dialect):
super(MSIdentifierPreparer, self).__init__(
dialect,
initial_quote="[",
final_quote="]",
quote_case_sensitive_collations=False,
)
def _escape_identifier(self, value):
return value.replace("]", "]]")
def _unescape_identifier(self, value):
return value.replace("]]", "]")
def quote_schema(self, schema, force=None):
"""Prepare a quoted table and schema name."""
# need to re-implement the deprecation warning entirely
if force is not None:
# not using the util.deprecated_params() decorator in this
# case because of the additional function call overhead on this
# very performance-critical spot.
util.warn_deprecated(
"The IdentifierPreparer.quote_schema.force parameter is "
"deprecated and will be removed in a future release. This "
"flag has no effect on the behavior of the "
"IdentifierPreparer.quote method; please refer to "
"quoted_name().",
version="1.3",
)
dbname, owner = _schema_elements(schema)
if dbname:
result = "%s.%s" % (self.quote(dbname), self.quote(owner))
elif owner:
result = self.quote(owner)
else:
result = ""
return result
def _db_plus_owner_listing(fn):
def wrap(dialect, connection, schema=None, **kw):
dbname, owner = _owner_plus_db(dialect, schema)
return _switch_db(
dbname,
connection,
fn,
dialect,
connection,
dbname,
owner,
schema,
**kw
)
return update_wrapper(wrap, fn)
def _db_plus_owner(fn):
def wrap(dialect, connection, tablename, schema=None, **kw):
dbname, owner = _owner_plus_db(dialect, schema)
return _switch_db(
dbname,
connection,
fn,
dialect,
connection,
tablename,
dbname,
owner,
schema,
**kw
)
return update_wrapper(wrap, fn)
def _switch_db(dbname, connection, fn, *arg, **kw):
if dbname:
current_db = connection.exec_driver_sql("select db_name()").scalar()
if current_db != dbname:
connection.exec_driver_sql(
"use %s" % connection.dialect.identifier_preparer.quote(dbname)
)
try:
return fn(*arg, **kw)
finally:
if dbname and current_db != dbname:
connection.exec_driver_sql(
"use %s"
% connection.dialect.identifier_preparer.quote(current_db)
)
def _owner_plus_db(dialect, schema):
if not schema:
return None, dialect.default_schema_name
elif "." in schema:
return _schema_elements(schema)
else:
return None, schema
_memoized_schema = util.LRUCache()
def _schema_elements(schema):
if isinstance(schema, quoted_name) and schema.quote:
return None, schema
if schema in _memoized_schema:
return _memoized_schema[schema]
# tests for this function are in:
# test/dialect/mssql/test_reflection.py ->
# OwnerPlusDBTest.test_owner_database_pairs
# test/dialect/mssql/test_compiler.py -> test_force_schema_*
# test/dialect/mssql/test_compiler.py -> test_schema_many_tokens_*
#
if schema.startswith("__[SCHEMA_"):
return None, schema
push = []
symbol = ""
bracket = False
has_brackets = False
for token in re.split(r"(\[|\]|\.)", schema):
if not token:
continue
if token == "[":
bracket = True
has_brackets = True
elif token == "]":
bracket = False
elif not bracket and token == ".":
if has_brackets:
push.append("[%s]" % symbol)
else:
push.append(symbol)
symbol = ""
has_brackets = False
else:
symbol += token
if symbol:
push.append(symbol)
if len(push) > 1:
dbname, owner = ".".join(push[0:-1]), push[-1]
# test for internal brackets
if re.match(r".*\].*\[.*", dbname[1:-1]):
dbname = quoted_name(dbname, quote=False)
else:
dbname = dbname.lstrip("[").rstrip("]")
elif len(push):
dbname, owner = None, push[0]
else:
dbname, owner = None, None
_memoized_schema[schema] = dbname, owner
return dbname, owner
class MSDialect(default.DefaultDialect):
# will assume it's at least mssql2005
name = "mssql"
supports_statement_cache = True
supports_default_values = True
supports_empty_insert = False
execution_ctx_cls = MSExecutionContext
use_scope_identity = True
max_identifier_length = 128
schema_name = "dbo"
implicit_returning = True
full_returning = True
colspecs = {
sqltypes.DateTime: _MSDateTime,
sqltypes.Date: _MSDate,
sqltypes.JSON: JSON,
sqltypes.JSON.JSONIndexType: JSONIndexType,
sqltypes.JSON.JSONPathType: JSONPathType,
sqltypes.Time: _BASETIMEIMPL,
sqltypes.Unicode: _MSUnicode,
sqltypes.UnicodeText: _MSUnicodeText,
DATETIMEOFFSET: DATETIMEOFFSET,
DATETIME2: DATETIME2,
SMALLDATETIME: SMALLDATETIME,
DATETIME: DATETIME,
}
engine_config_types = default.DefaultDialect.engine_config_types.union(
{"legacy_schema_aliasing": util.asbool}
)
ischema_names = ischema_names
supports_sequences = True
sequences_optional = True
# T-SQL's actual default is -9223372036854775808
default_sequence_base = 1
supports_native_boolean = False
non_native_boolean_check_constraint = False
supports_unicode_binds = True
postfetch_lastrowid = True
_supports_offset_fetch = False
_supports_nvarchar_max = False
legacy_schema_aliasing = False
server_version_info = ()
statement_compiler = MSSQLCompiler
ddl_compiler = MSDDLCompiler
type_compiler = MSTypeCompiler
preparer = MSIdentifierPreparer
construct_arguments = [
(sa_schema.PrimaryKeyConstraint, {"clustered": None}),
(sa_schema.UniqueConstraint, {"clustered": None}),
(sa_schema.Index, {"clustered": None, "include": None, "where": None}),
(
sa_schema.Column,
{"identity_start": None, "identity_increment": None},
),
]
def __init__(
self,
query_timeout=None,
use_scope_identity=True,
schema_name="dbo",
isolation_level=None,
deprecate_large_types=None,
json_serializer=None,
json_deserializer=None,
legacy_schema_aliasing=None,
ignore_no_transaction_on_rollback=False,
**opts
):
self.query_timeout = int(query_timeout or 0)
self.schema_name = schema_name
self.use_scope_identity = use_scope_identity
self.deprecate_large_types = deprecate_large_types
self.ignore_no_transaction_on_rollback = (
ignore_no_transaction_on_rollback
)
if legacy_schema_aliasing is not None:
util.warn_deprecated(
"The legacy_schema_aliasing parameter is "
"deprecated and will be removed in a future release.",
"1.4",
)
self.legacy_schema_aliasing = legacy_schema_aliasing
super(MSDialect, self).__init__(**opts)
self.isolation_level = isolation_level
self._json_serializer = json_serializer
self._json_deserializer = json_deserializer
def do_savepoint(self, connection, name):
# give the DBAPI a push
connection.exec_driver_sql("IF @@TRANCOUNT = 0 BEGIN TRANSACTION")
super(MSDialect, self).do_savepoint(connection, name)
def do_release_savepoint(self, connection, name):
# SQL Server does not support RELEASE SAVEPOINT
pass
def do_rollback(self, dbapi_connection):
try:
super(MSDialect, self).do_rollback(dbapi_connection)
except self.dbapi.ProgrammingError as e:
if self.ignore_no_transaction_on_rollback and re.match(
r".*\b111214\b", str(e)
):
util.warn(
"ProgrammingError 111214 "
"'No corresponding transaction found.' "
"has been suppressed via "
"ignore_no_transaction_on_rollback=True"
)
else:
raise
_isolation_lookup = set(
[
"SERIALIZABLE",
"READ UNCOMMITTED",
"READ COMMITTED",
"REPEATABLE READ",
"SNAPSHOT",
]
)
def set_isolation_level(self, connection, level):
level = level.replace("_", " ")
if level not in self._isolation_lookup:
raise exc.ArgumentError(
"Invalid value '%s' for isolation_level. "
"Valid isolation levels for %s are %s"
% (level, self.name, ", ".join(self._isolation_lookup))
)
cursor = connection.cursor()
cursor.execute("SET TRANSACTION ISOLATION LEVEL %s" % level)
cursor.close()
if level == "SNAPSHOT":
connection.commit()
def get_isolation_level(self, dbapi_connection):
cursor = dbapi_connection.cursor()
view_name = "sys.system_views"
try:
cursor.execute(
(
"SELECT name FROM {} WHERE name IN "
"('dm_exec_sessions', 'dm_pdw_nodes_exec_sessions')"
).format(view_name)
)
row = cursor.fetchone()
if not row:
raise NotImplementedError(
"Can't fetch isolation level on this particular "
"SQL Server version."
)
view_name = "sys.{}".format(row[0])
cursor.execute(
"""
SELECT CASE transaction_isolation_level
WHEN 0 THEN NULL
WHEN 1 THEN 'READ UNCOMMITTED'
WHEN 2 THEN 'READ COMMITTED'
WHEN 3 THEN 'REPEATABLE READ'
WHEN 4 THEN 'SERIALIZABLE'
WHEN 5 THEN 'SNAPSHOT' END
AS TRANSACTION_ISOLATION_LEVEL
FROM {}
where session_id = @@SPID
""".format(
view_name
)
)
except self.dbapi.Error as err:
util.raise_(
NotImplementedError(
"Can't fetch isolation level; encountered error {} when "
'attempting to query the "{}" view.'.format(err, view_name)
),
from_=err,
)
else:
row = cursor.fetchone()
return row[0].upper()
finally:
cursor.close()
def initialize(self, connection):
super(MSDialect, self).initialize(connection)
self._setup_version_attributes()
self._setup_supports_nvarchar_max(connection)
def on_connect(self):
if self.isolation_level is not None:
def connect(conn):
self.set_isolation_level(conn, self.isolation_level)
return connect
else:
return None
def _setup_version_attributes(self):
if self.server_version_info[0] not in list(range(8, 17)):
util.warn(
"Unrecognized server version info '%s'. Some SQL Server "
"features may not function properly."
% ".".join(str(x) for x in self.server_version_info)
)
if self.server_version_info >= MS_2008_VERSION:
self.supports_multivalues_insert = True
if self.deprecate_large_types is None:
self.deprecate_large_types = (
self.server_version_info >= MS_2012_VERSION
)
self._supports_offset_fetch = (
self.server_version_info and self.server_version_info[0] >= 11
)
def _setup_supports_nvarchar_max(self, connection):
try:
connection.scalar(
sql.text("SELECT CAST('test max support' AS NVARCHAR(max))")
)
except exc.DBAPIError:
self._supports_nvarchar_max = False
else:
self._supports_nvarchar_max = True
def _get_default_schema_name(self, connection):
query = sql.text("SELECT schema_name()")
default_schema_name = connection.scalar(query)
if default_schema_name is not None:
# guard against the case where the default_schema_name is being
# fed back into a table reflection function.
return quoted_name(default_schema_name, quote=True)
else:
return self.schema_name
@_db_plus_owner
def has_table(self, connection, tablename, dbname, owner, schema):
self._ensure_has_table_connection(connection)
if tablename.startswith("#"): # temporary table
tables = ischema.mssql_temp_table_columns
s = sql.select(tables.c.table_name).where(
tables.c.table_name.like(
self._temp_table_name_like_pattern(tablename)
)
)
# #7168: fetch all (not just first match) in case some other #temp
# table with the same name happens to appear first
table_names = connection.execute(s).scalars().fetchall()
# #6910: verify it's not a temp table from another session
for table_name in table_names:
if bool(
connection.scalar(
text("SELECT object_id(:table_name)"),
{"table_name": "tempdb.dbo.[{}]".format(table_name)},
)
):
return True
else:
return False
else:
tables = ischema.tables
s = sql.select(tables.c.table_name).where(
sql.and_(
tables.c.table_type == "BASE TABLE",
tables.c.table_name == tablename,
)
)
if owner:
s = s.where(tables.c.table_schema == owner)
c = connection.execute(s)
return c.first() is not None
@_db_plus_owner
def has_sequence(self, connection, sequencename, dbname, owner, schema):
sequences = ischema.sequences
s = sql.select(sequences.c.sequence_name).where(
sequences.c.sequence_name == sequencename
)
if owner:
s = s.where(sequences.c.sequence_schema == owner)
c = connection.execute(s)
return c.first() is not None
@reflection.cache
@_db_plus_owner_listing
def get_sequence_names(self, connection, dbname, owner, schema, **kw):
sequences = ischema.sequences
s = sql.select(sequences.c.sequence_name)
if owner:
s = s.where(sequences.c.sequence_schema == owner)
c = connection.execute(s)
return [row[0] for row in c]
@reflection.cache
def get_schema_names(self, connection, **kw):
s = sql.select(ischema.schemata.c.schema_name).order_by(
ischema.schemata.c.schema_name
)
schema_names = [r[0] for r in connection.execute(s)]
return schema_names
@reflection.cache
@_db_plus_owner_listing
def get_table_names(self, connection, dbname, owner, schema, **kw):
tables = ischema.tables
s = (
sql.select(tables.c.table_name)
.where(
sql.and_(
tables.c.table_schema == owner,
tables.c.table_type == "BASE TABLE",
)
)
.order_by(tables.c.table_name)
)
table_names = [r[0] for r in connection.execute(s)]
return table_names
@reflection.cache
@_db_plus_owner_listing
def get_view_names(self, connection, dbname, owner, schema, **kw):
tables = ischema.tables
s = (
sql.select(tables.c.table_name)
.where(
sql.and_(
tables.c.table_schema == owner,
tables.c.table_type == "VIEW",
)
)
.order_by(tables.c.table_name)
)
view_names = [r[0] for r in connection.execute(s)]
return view_names
@reflection.cache
@_db_plus_owner
def get_indexes(self, connection, tablename, dbname, owner, schema, **kw):
filter_definition = (
"ind.filter_definition"
if self.server_version_info >= MS_2008_VERSION
else "NULL as filter_definition"
)
rp = connection.execution_options(future_result=True).execute(
sql.text(
"select ind.index_id, ind.is_unique, ind.name, "
"%s "
"from sys.indexes as ind join sys.tables as tab on "
"ind.object_id=tab.object_id "
"join sys.schemas as sch on sch.schema_id=tab.schema_id "
"where tab.name = :tabname "
"and sch.name=:schname "
"and ind.is_primary_key=0 and ind.type != 0"
% filter_definition
)
.bindparams(
sql.bindparam("tabname", tablename, ischema.CoerceUnicode()),
sql.bindparam("schname", owner, ischema.CoerceUnicode()),
)
.columns(name=sqltypes.Unicode())
)
indexes = {}
for row in rp.mappings():
indexes[row["index_id"]] = {
"name": row["name"],
"unique": row["is_unique"] == 1,
"column_names": [],
"include_columns": [],
}
if row["filter_definition"] is not None:
indexes[row["index_id"]].setdefault("dialect_options", {})[
"mssql_where"
] = row["filter_definition"]
rp = connection.execution_options(future_result=True).execute(
sql.text(
"select ind_col.index_id, ind_col.object_id, col.name, "
"ind_col.is_included_column "
"from sys.columns as col "
"join sys.tables as tab on tab.object_id=col.object_id "
"join sys.index_columns as ind_col on "
"(ind_col.column_id=col.column_id and "
"ind_col.object_id=tab.object_id) "
"join sys.schemas as sch on sch.schema_id=tab.schema_id "
"where tab.name=:tabname "
"and sch.name=:schname"
)
.bindparams(
sql.bindparam("tabname", tablename, ischema.CoerceUnicode()),
sql.bindparam("schname", owner, ischema.CoerceUnicode()),
)
.columns(name=sqltypes.Unicode())
)
for row in rp.mappings():
if row["index_id"] in indexes:
if row["is_included_column"]:
indexes[row["index_id"]]["include_columns"].append(
row["name"]
)
else:
indexes[row["index_id"]]["column_names"].append(
row["name"]
)
for index_info in indexes.values():
# NOTE: "root level" include_columns is legacy, now part of
# dialect_options (issue #7382)
index_info.setdefault("dialect_options", {})[
"mssql_include"
] = index_info["include_columns"]
return list(indexes.values())
@reflection.cache
@_db_plus_owner
def get_view_definition(
self, connection, viewname, dbname, owner, schema, **kw
):
rp = connection.execute(
sql.text(
"select definition from sys.sql_modules as mod, "
"sys.views as views, "
"sys.schemas as sch"
" where "
"mod.object_id=views.object_id and "
"views.schema_id=sch.schema_id and "
"views.name=:viewname and sch.name=:schname"
).bindparams(
sql.bindparam("viewname", viewname, ischema.CoerceUnicode()),
sql.bindparam("schname", owner, ischema.CoerceUnicode()),
)
)
if rp:
view_def = rp.scalar()
return view_def
def _temp_table_name_like_pattern(self, tablename):
# LIKE uses '%' to match zero or more characters and '_' to match any
# single character. We want to match literal underscores, so T-SQL
# requires that we enclose them in square brackets.
return tablename + (
("[_][_][_]%") if not tablename.startswith("##") else ""
)
def _get_internal_temp_table_name(self, connection, tablename):
# it's likely that schema is always "dbo", but since we can
# get it here, let's get it.
# see https://stackoverflow.com/questions/8311959/
# specifying-schema-for-temporary-tables
try:
return connection.execute(
sql.text(
"select table_schema, table_name "
"from tempdb.information_schema.tables "
"where table_name like :p1"
),
{"p1": self._temp_table_name_like_pattern(tablename)},
).one()
except exc.MultipleResultsFound as me:
util.raise_(
exc.UnreflectableTableError(
"Found more than one temporary table named '%s' in tempdb "
"at this time. Cannot reliably resolve that name to its "
"internal table name." % tablename
),
replace_context=me,
)
except exc.NoResultFound as ne:
util.raise_(
exc.NoSuchTableError(
"Unable to find a temporary table named '%s' in tempdb."
% tablename
),
replace_context=ne,
)
@reflection.cache
@_db_plus_owner
def get_columns(self, connection, tablename, dbname, owner, schema, **kw):
is_temp_table = tablename.startswith("#")
if is_temp_table:
owner, tablename = self._get_internal_temp_table_name(
connection, tablename
)
columns = ischema.mssql_temp_table_columns
else:
columns = ischema.columns
computed_cols = ischema.computed_columns
identity_cols = ischema.identity_columns
if owner:
whereclause = sql.and_(
columns.c.table_name == tablename,
columns.c.table_schema == owner,
)
full_name = columns.c.table_schema + "." + columns.c.table_name
else:
whereclause = columns.c.table_name == tablename
full_name = columns.c.table_name
join = columns.join(
computed_cols,
onclause=sql.and_(
computed_cols.c.object_id == func.object_id(full_name),
computed_cols.c.name
== columns.c.column_name.collate("DATABASE_DEFAULT"),
),
isouter=True,
).join(
identity_cols,
onclause=sql.and_(
identity_cols.c.object_id == func.object_id(full_name),
identity_cols.c.name
== columns.c.column_name.collate("DATABASE_DEFAULT"),
),
isouter=True,
)
if self._supports_nvarchar_max:
computed_definition = computed_cols.c.definition
else:
# tds_version 4.2 does not support NVARCHAR(MAX)
computed_definition = sql.cast(
computed_cols.c.definition, NVARCHAR(4000)
)
s = (
sql.select(
columns,
computed_definition,
computed_cols.c.is_persisted,
identity_cols.c.is_identity,
identity_cols.c.seed_value,
identity_cols.c.increment_value,
)
.where(whereclause)
.select_from(join)
.order_by(columns.c.ordinal_position)
)
c = connection.execution_options(future_result=True).execute(s)
cols = []
for row in c.mappings():
name = row[columns.c.column_name]
type_ = row[columns.c.data_type]
nullable = row[columns.c.is_nullable] == "YES"
charlen = row[columns.c.character_maximum_length]
numericprec = row[columns.c.numeric_precision]
numericscale = row[columns.c.numeric_scale]
default = row[columns.c.column_default]
collation = row[columns.c.collation_name]
definition = row[computed_definition]
is_persisted = row[computed_cols.c.is_persisted]
is_identity = row[identity_cols.c.is_identity]
identity_start = row[identity_cols.c.seed_value]
identity_increment = row[identity_cols.c.increment_value]
coltype = self.ischema_names.get(type_, None)
kwargs = {}
if coltype in (
MSString,
MSChar,
MSNVarchar,
MSNChar,
MSText,
MSNText,
MSBinary,
MSVarBinary,
sqltypes.LargeBinary,
):
if charlen == -1:
charlen = None
kwargs["length"] = charlen
if collation:
kwargs["collation"] = collation
if coltype is None:
util.warn(
"Did not recognize type '%s' of column '%s'"
% (type_, name)
)
coltype = sqltypes.NULLTYPE
else:
if issubclass(coltype, sqltypes.Numeric):
kwargs["precision"] = numericprec
if not issubclass(coltype, sqltypes.Float):
kwargs["scale"] = numericscale
coltype = coltype(**kwargs)
cdict = {
"name": name,
"type": coltype,
"nullable": nullable,
"default": default,
"autoincrement": is_identity is not None,
}
if definition is not None and is_persisted is not None:
cdict["computed"] = {
"sqltext": definition,
"persisted": is_persisted,
}
if is_identity is not None:
# identity_start and identity_increment are Decimal or None
if identity_start is None or identity_increment is None:
cdict["identity"] = {}
else:
if isinstance(coltype, sqltypes.BigInteger):
start = compat.long_type(identity_start)
increment = compat.long_type(identity_increment)
elif isinstance(coltype, sqltypes.Integer):
start = int(identity_start)
increment = int(identity_increment)
else:
start = identity_start
increment = identity_increment
cdict["identity"] = {
"start": start,
"increment": increment,
}
cols.append(cdict)
return cols
@reflection.cache
@_db_plus_owner
def get_pk_constraint(
self, connection, tablename, dbname, owner, schema, **kw
):
pkeys = []
TC = ischema.constraints
C = ischema.key_constraints.alias("C")
# Primary key constraints
s = (
sql.select(
C.c.column_name, TC.c.constraint_type, C.c.constraint_name
)
.where(
sql.and_(
TC.c.constraint_name == C.c.constraint_name,
TC.c.table_schema == C.c.table_schema,
C.c.table_name == tablename,
C.c.table_schema == owner,
),
)
.order_by(TC.c.constraint_name, C.c.ordinal_position)
)
c = connection.execution_options(future_result=True).execute(s)
constraint_name = None
for row in c.mappings():
if "PRIMARY" in row[TC.c.constraint_type.name]:
pkeys.append(row["COLUMN_NAME"])
if constraint_name is None:
constraint_name = row[C.c.constraint_name.name]
return {"constrained_columns": pkeys, "name": constraint_name}
@reflection.cache
@_db_plus_owner
def get_foreign_keys(
self, connection, tablename, dbname, owner, schema, **kw
):
# Foreign key constraints
s = (
text(
"""\
WITH fk_info AS (
SELECT
ischema_ref_con.constraint_schema,
ischema_ref_con.constraint_name,
ischema_key_col.ordinal_position,
ischema_key_col.table_schema,
ischema_key_col.table_name,
ischema_ref_con.unique_constraint_schema,
ischema_ref_con.unique_constraint_name,
ischema_ref_con.match_option,
ischema_ref_con.update_rule,
ischema_ref_con.delete_rule,
ischema_key_col.column_name AS constrained_column
FROM
INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS ischema_ref_con
INNER JOIN
INFORMATION_SCHEMA.KEY_COLUMN_USAGE ischema_key_col ON
ischema_key_col.table_schema = ischema_ref_con.constraint_schema
AND ischema_key_col.constraint_name =
ischema_ref_con.constraint_name
WHERE ischema_key_col.table_name = :tablename
AND ischema_key_col.table_schema = :owner
),
constraint_info AS (
SELECT
ischema_key_col.constraint_schema,
ischema_key_col.constraint_name,
ischema_key_col.ordinal_position,
ischema_key_col.table_schema,
ischema_key_col.table_name,
ischema_key_col.column_name
FROM
INFORMATION_SCHEMA.KEY_COLUMN_USAGE ischema_key_col
),
index_info AS (
SELECT
sys.schemas.name AS index_schema,
sys.indexes.name AS index_name,
sys.index_columns.key_ordinal AS ordinal_position,
sys.schemas.name AS table_schema,
sys.objects.name AS table_name,
sys.columns.name AS column_name
FROM
sys.indexes
INNER JOIN
sys.objects ON
sys.objects.object_id = sys.indexes.object_id
INNER JOIN
sys.schemas ON
sys.schemas.schema_id = sys.objects.schema_id
INNER JOIN
sys.index_columns ON
sys.index_columns.object_id = sys.objects.object_id
AND sys.index_columns.index_id = sys.indexes.index_id
INNER JOIN
sys.columns ON
sys.columns.object_id = sys.indexes.object_id
AND sys.columns.column_id = sys.index_columns.column_id
)
SELECT
fk_info.constraint_schema,
fk_info.constraint_name,
fk_info.ordinal_position,
fk_info.constrained_column,
constraint_info.table_schema AS referred_table_schema,
constraint_info.table_name AS referred_table_name,
constraint_info.column_name AS referred_column,
fk_info.match_option,
fk_info.update_rule,
fk_info.delete_rule
FROM
fk_info INNER JOIN constraint_info ON
constraint_info.constraint_schema =
fk_info.unique_constraint_schema
AND constraint_info.constraint_name =
fk_info.unique_constraint_name
AND constraint_info.ordinal_position = fk_info.ordinal_position
UNION
SELECT
fk_info.constraint_schema,
fk_info.constraint_name,
fk_info.ordinal_position,
fk_info.constrained_column,
index_info.table_schema AS referred_table_schema,
index_info.table_name AS referred_table_name,
index_info.column_name AS referred_column,
fk_info.match_option,
fk_info.update_rule,
fk_info.delete_rule
FROM
fk_info INNER JOIN index_info ON
index_info.index_schema = fk_info.unique_constraint_schema
AND index_info.index_name = fk_info.unique_constraint_name
AND index_info.ordinal_position = fk_info.ordinal_position
ORDER BY fk_info.constraint_schema, fk_info.constraint_name,
fk_info.ordinal_position
"""
)
.bindparams(
sql.bindparam("tablename", tablename, ischema.CoerceUnicode()),
sql.bindparam("owner", owner, ischema.CoerceUnicode()),
)
.columns(
constraint_schema=sqltypes.Unicode(),
constraint_name=sqltypes.Unicode(),
table_schema=sqltypes.Unicode(),
table_name=sqltypes.Unicode(),
constrained_column=sqltypes.Unicode(),
referred_table_schema=sqltypes.Unicode(),
referred_table_name=sqltypes.Unicode(),
referred_column=sqltypes.Unicode(),
)
)
# group rows by constraint ID, to handle multi-column FKs
fkeys = []
def fkey_rec():
return {
"name": None,
"constrained_columns": [],
"referred_schema": None,
"referred_table": None,
"referred_columns": [],
"options": {},
}
fkeys = util.defaultdict(fkey_rec)
for r in connection.execute(s).fetchall():
(
_, # constraint schema
rfknm,
_, # ordinal position
scol,
rschema,
rtbl,
rcol,
# TODO: we support match=<keyword> for foreign keys so
# we can support this also, PG has match=FULL for example
# but this seems to not be a valid value for SQL Server
_, # match rule
fkuprule,
fkdelrule,
) = r
rec = fkeys[rfknm]
rec["name"] = rfknm
if fkuprule != "NO ACTION":
rec["options"]["onupdate"] = fkuprule
if fkdelrule != "NO ACTION":
rec["options"]["ondelete"] = fkdelrule
if not rec["referred_table"]:
rec["referred_table"] = rtbl
if schema is not None or owner != rschema:
if dbname:
rschema = dbname + "." + rschema
rec["referred_schema"] = rschema
local_cols, remote_cols = (
rec["constrained_columns"],
rec["referred_columns"],
)
local_cols.append(scol)
remote_cols.append(rcol)
return list(fkeys.values())