You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1703 lines
55 KiB
Python

# sql/base.py
# Copyright (C) 2005-2022 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: https://www.opensource.org/licenses/mit-license.php
"""Foundational utilities common to many sql modules.
"""
import itertools
import operator
import re
from . import roles
from . import visitors
from .traversals import HasCacheKey # noqa
from .traversals import HasCopyInternals # noqa
from .traversals import MemoizedHasCacheKey # noqa
from .visitors import ClauseVisitor
from .visitors import ExtendedInternalTraversal
from .visitors import InternalTraversal
from .. import exc
from .. import util
from ..util import HasMemoized
from ..util import hybridmethod
coercions = None
elements = None
type_api = None
PARSE_AUTOCOMMIT = util.symbol("PARSE_AUTOCOMMIT")
NO_ARG = util.symbol("NO_ARG")
class Immutable(object):
"""mark a ClauseElement as 'immutable' when expressions are cloned."""
_is_immutable = True
def unique_params(self, *optionaldict, **kwargs):
raise NotImplementedError("Immutable objects do not support copying")
def params(self, *optionaldict, **kwargs):
raise NotImplementedError("Immutable objects do not support copying")
def _clone(self, **kw):
return self
def _copy_internals(self, **kw):
pass
class SingletonConstant(Immutable):
"""Represent SQL constants like NULL, TRUE, FALSE"""
_is_singleton_constant = True
def __new__(cls, *arg, **kw):
return cls._singleton
@classmethod
def _create_singleton(cls):
obj = object.__new__(cls)
obj.__init__()
# for a long time this was an empty frozenset, meaning
# a SingletonConstant would never be a "corresponding column" in
# a statement. This referred to #6259. However, in #7154 we see
# that we do in fact need "correspondence" to work when matching cols
# in result sets, so the non-correspondence was moved to a more
# specific level when we are actually adapting expressions for SQL
# render only.
obj.proxy_set = frozenset([obj])
cls._singleton = obj
def _from_objects(*elements):
return itertools.chain.from_iterable(
[element._from_objects for element in elements]
)
def _select_iterables(elements):
"""expand tables into individual columns in the
given list of column expressions.
"""
return itertools.chain.from_iterable(
[c._select_iterable for c in elements]
)
def _generative(fn):
"""non-caching _generative() decorator.
This is basically the legacy decorator that copies the object and
runs a method on the new copy.
"""
@util.decorator
def _generative(fn, self, *args, **kw):
"""Mark a method as generative."""
self = self._generate()
x = fn(self, *args, **kw)
assert x is None, "generative methods must have no return value"
return self
decorated = _generative(fn)
decorated.non_generative = fn
return decorated
def _exclusive_against(*names, **kw):
msgs = kw.pop("msgs", {})
defaults = kw.pop("defaults", {})
getters = [
(name, operator.attrgetter(name), defaults.get(name, None))
for name in names
]
@util.decorator
def check(fn, *args, **kw):
# make pylance happy by not including "self" in the argument
# list
self = args[0]
args = args[1:]
for name, getter, default_ in getters:
if getter(self) is not default_:
msg = msgs.get(
name,
"Method %s() has already been invoked on this %s construct"
% (fn.__name__, self.__class__),
)
raise exc.InvalidRequestError(msg)
return fn(self, *args, **kw)
return check
def _clone(element, **kw):
return element._clone(**kw)
def _expand_cloned(elements):
"""expand the given set of ClauseElements to be the set of all 'cloned'
predecessors.
"""
return itertools.chain(*[x._cloned_set for x in elements])
def _cloned_intersection(a, b):
"""return the intersection of sets a and b, counting
any overlap between 'cloned' predecessors.
The returned set is in terms of the entities present within 'a'.
"""
all_overlap = set(_expand_cloned(a)).intersection(_expand_cloned(b))
return set(
elem for elem in a if all_overlap.intersection(elem._cloned_set)
)
def _cloned_difference(a, b):
all_overlap = set(_expand_cloned(a)).intersection(_expand_cloned(b))
return set(
elem for elem in a if not all_overlap.intersection(elem._cloned_set)
)
class _DialectArgView(util.collections_abc.MutableMapping):
"""A dictionary view of dialect-level arguments in the form
<dialectname>_<argument_name>.
"""
def __init__(self, obj):
self.obj = obj
def _key(self, key):
try:
dialect, value_key = key.split("_", 1)
except ValueError as err:
util.raise_(KeyError(key), replace_context=err)
else:
return dialect, value_key
def __getitem__(self, key):
dialect, value_key = self._key(key)
try:
opt = self.obj.dialect_options[dialect]
except exc.NoSuchModuleError as err:
util.raise_(KeyError(key), replace_context=err)
else:
return opt[value_key]
def __setitem__(self, key, value):
try:
dialect, value_key = self._key(key)
except KeyError as err:
util.raise_(
exc.ArgumentError(
"Keys must be of the form <dialectname>_<argname>"
),
replace_context=err,
)
else:
self.obj.dialect_options[dialect][value_key] = value
def __delitem__(self, key):
dialect, value_key = self._key(key)
del self.obj.dialect_options[dialect][value_key]
def __len__(self):
return sum(
len(args._non_defaults)
for args in self.obj.dialect_options.values()
)
def __iter__(self):
return (
"%s_%s" % (dialect_name, value_name)
for dialect_name in self.obj.dialect_options
for value_name in self.obj.dialect_options[
dialect_name
]._non_defaults
)
class _DialectArgDict(util.collections_abc.MutableMapping):
"""A dictionary view of dialect-level arguments for a specific
dialect.
Maintains a separate collection of user-specified arguments
and dialect-specified default arguments.
"""
def __init__(self):
self._non_defaults = {}
self._defaults = {}
def __len__(self):
return len(set(self._non_defaults).union(self._defaults))
def __iter__(self):
return iter(set(self._non_defaults).union(self._defaults))
def __getitem__(self, key):
if key in self._non_defaults:
return self._non_defaults[key]
else:
return self._defaults[key]
def __setitem__(self, key, value):
self._non_defaults[key] = value
def __delitem__(self, key):
del self._non_defaults[key]
@util.preload_module("sqlalchemy.dialects")
def _kw_reg_for_dialect(dialect_name):
dialect_cls = util.preloaded.dialects.registry.load(dialect_name)
if dialect_cls.construct_arguments is None:
return None
return dict(dialect_cls.construct_arguments)
class DialectKWArgs(object):
"""Establish the ability for a class to have dialect-specific arguments
with defaults and constructor validation.
The :class:`.DialectKWArgs` interacts with the
:attr:`.DefaultDialect.construct_arguments` present on a dialect.
.. seealso::
:attr:`.DefaultDialect.construct_arguments`
"""
_dialect_kwargs_traverse_internals = [
("dialect_options", InternalTraversal.dp_dialect_options)
]
@classmethod
def argument_for(cls, dialect_name, argument_name, default):
"""Add a new kind of dialect-specific keyword argument for this class.
E.g.::
Index.argument_for("mydialect", "length", None)
some_index = Index('a', 'b', mydialect_length=5)
The :meth:`.DialectKWArgs.argument_for` method is a per-argument
way adding extra arguments to the
:attr:`.DefaultDialect.construct_arguments` dictionary. This
dictionary provides a list of argument names accepted by various
schema-level constructs on behalf of a dialect.
New dialects should typically specify this dictionary all at once as a
data member of the dialect class. The use case for ad-hoc addition of
argument names is typically for end-user code that is also using
a custom compilation scheme which consumes the additional arguments.
:param dialect_name: name of a dialect. The dialect must be
locatable, else a :class:`.NoSuchModuleError` is raised. The
dialect must also include an existing
:attr:`.DefaultDialect.construct_arguments` collection, indicating
that it participates in the keyword-argument validation and default
system, else :class:`.ArgumentError` is raised. If the dialect does
not include this collection, then any keyword argument can be
specified on behalf of this dialect already. All dialects packaged
within SQLAlchemy include this collection, however for third party
dialects, support may vary.
:param argument_name: name of the parameter.
:param default: default value of the parameter.
.. versionadded:: 0.9.4
"""
construct_arg_dictionary = DialectKWArgs._kw_registry[dialect_name]
if construct_arg_dictionary is None:
raise exc.ArgumentError(
"Dialect '%s' does have keyword-argument "
"validation and defaults enabled configured" % dialect_name
)
if cls not in construct_arg_dictionary:
construct_arg_dictionary[cls] = {}
construct_arg_dictionary[cls][argument_name] = default
@util.memoized_property
def dialect_kwargs(self):
"""A collection of keyword arguments specified as dialect-specific
options to this construct.
The arguments are present here in their original ``<dialect>_<kwarg>``
format. Only arguments that were actually passed are included;
unlike the :attr:`.DialectKWArgs.dialect_options` collection, which
contains all options known by this dialect including defaults.
The collection is also writable; keys are accepted of the
form ``<dialect>_<kwarg>`` where the value will be assembled
into the list of options.
.. versionadded:: 0.9.2
.. versionchanged:: 0.9.4 The :attr:`.DialectKWArgs.dialect_kwargs`
collection is now writable.
.. seealso::
:attr:`.DialectKWArgs.dialect_options` - nested dictionary form
"""
return _DialectArgView(self)
@property
def kwargs(self):
"""A synonym for :attr:`.DialectKWArgs.dialect_kwargs`."""
return self.dialect_kwargs
_kw_registry = util.PopulateDict(_kw_reg_for_dialect)
def _kw_reg_for_dialect_cls(self, dialect_name):
construct_arg_dictionary = DialectKWArgs._kw_registry[dialect_name]
d = _DialectArgDict()
if construct_arg_dictionary is None:
d._defaults.update({"*": None})
else:
for cls in reversed(self.__class__.__mro__):
if cls in construct_arg_dictionary:
d._defaults.update(construct_arg_dictionary[cls])
return d
@util.memoized_property
def dialect_options(self):
"""A collection of keyword arguments specified as dialect-specific
options to this construct.
This is a two-level nested registry, keyed to ``<dialect_name>``
and ``<argument_name>``. For example, the ``postgresql_where``
argument would be locatable as::
arg = my_object.dialect_options['postgresql']['where']
.. versionadded:: 0.9.2
.. seealso::
:attr:`.DialectKWArgs.dialect_kwargs` - flat dictionary form
"""
return util.PopulateDict(
util.portable_instancemethod(self._kw_reg_for_dialect_cls)
)
def _validate_dialect_kwargs(self, kwargs):
# validate remaining kwargs that they all specify DB prefixes
if not kwargs:
return
for k in kwargs:
m = re.match("^(.+?)_(.+)$", k)
if not m:
raise TypeError(
"Additional arguments should be "
"named <dialectname>_<argument>, got '%s'" % k
)
dialect_name, arg_name = m.group(1, 2)
try:
construct_arg_dictionary = self.dialect_options[dialect_name]
except exc.NoSuchModuleError:
util.warn(
"Can't validate argument %r; can't "
"locate any SQLAlchemy dialect named %r"
% (k, dialect_name)
)
self.dialect_options[dialect_name] = d = _DialectArgDict()
d._defaults.update({"*": None})
d._non_defaults[arg_name] = kwargs[k]
else:
if (
"*" not in construct_arg_dictionary
and arg_name not in construct_arg_dictionary
):
raise exc.ArgumentError(
"Argument %r is not accepted by "
"dialect %r on behalf of %r"
% (k, dialect_name, self.__class__)
)
else:
construct_arg_dictionary[arg_name] = kwargs[k]
class CompileState(object):
"""Produces additional object state necessary for a statement to be
compiled.
the :class:`.CompileState` class is at the base of classes that assemble
state for a particular statement object that is then used by the
compiler. This process is essentially an extension of the process that
the SQLCompiler.visit_XYZ() method takes, however there is an emphasis
on converting raw user intent into more organized structures rather than
producing string output. The top-level :class:`.CompileState` for the
statement being executed is also accessible when the execution context
works with invoking the statement and collecting results.
The production of :class:`.CompileState` is specific to the compiler, such
as within the :meth:`.SQLCompiler.visit_insert`,
:meth:`.SQLCompiler.visit_select` etc. methods. These methods are also
responsible for associating the :class:`.CompileState` with the
:class:`.SQLCompiler` itself, if the statement is the "toplevel" statement,
i.e. the outermost SQL statement that's actually being executed.
There can be other :class:`.CompileState` objects that are not the
toplevel, such as when a SELECT subquery or CTE-nested
INSERT/UPDATE/DELETE is generated.
.. versionadded:: 1.4
"""
__slots__ = ("statement",)
plugins = {}
@classmethod
def create_for_statement(cls, statement, compiler, **kw):
# factory construction.
if statement._propagate_attrs:
plugin_name = statement._propagate_attrs.get(
"compile_state_plugin", "default"
)
klass = cls.plugins.get(
(plugin_name, statement._effective_plugin_target), None
)
if klass is None:
klass = cls.plugins[
("default", statement._effective_plugin_target)
]
else:
klass = cls.plugins[
("default", statement._effective_plugin_target)
]
if klass is cls:
return cls(statement, compiler, **kw)
else:
return klass.create_for_statement(statement, compiler, **kw)
def __init__(self, statement, compiler, **kw):
self.statement = statement
@classmethod
def get_plugin_class(cls, statement):
plugin_name = statement._propagate_attrs.get(
"compile_state_plugin", None
)
if plugin_name:
key = (plugin_name, statement._effective_plugin_target)
if key in cls.plugins:
return cls.plugins[key]
# there's no case where we call upon get_plugin_class() and want
# to get None back, there should always be a default. return that
# if there was no plugin-specific class (e.g. Insert with "orm"
# plugin)
try:
return cls.plugins[("default", statement._effective_plugin_target)]
except KeyError:
return None
@classmethod
def _get_plugin_class_for_plugin(cls, statement, plugin_name):
try:
return cls.plugins[
(plugin_name, statement._effective_plugin_target)
]
except KeyError:
return None
@classmethod
def plugin_for(cls, plugin_name, visit_name):
def decorate(cls_to_decorate):
cls.plugins[(plugin_name, visit_name)] = cls_to_decorate
return cls_to_decorate
return decorate
class Generative(HasMemoized):
"""Provide a method-chaining pattern in conjunction with the
@_generative decorator."""
def _generate(self):
skip = self._memoized_keys
cls = self.__class__
s = cls.__new__(cls)
if skip:
# ensure this iteration remains atomic
s.__dict__ = {
k: v for k, v in self.__dict__.copy().items() if k not in skip
}
else:
s.__dict__ = self.__dict__.copy()
return s
class InPlaceGenerative(HasMemoized):
"""Provide a method-chaining pattern in conjunction with the
@_generative decorator that mutates in place."""
def _generate(self):
skip = self._memoized_keys
for k in skip:
self.__dict__.pop(k, None)
return self
class HasCompileState(Generative):
"""A class that has a :class:`.CompileState` associated with it."""
_compile_state_plugin = None
_attributes = util.immutabledict()
_compile_state_factory = CompileState.create_for_statement
class _MetaOptions(type):
"""metaclass for the Options class."""
def __init__(cls, classname, bases, dict_):
cls._cache_attrs = tuple(
sorted(
d
for d in dict_
if not d.startswith("__")
and d not in ("_cache_key_traversal",)
)
)
type.__init__(cls, classname, bases, dict_)
def __add__(self, other):
o1 = self()
if set(other).difference(self._cache_attrs):
raise TypeError(
"dictionary contains attributes not covered by "
"Options class %s: %r"
% (self, set(other).difference(self._cache_attrs))
)
o1.__dict__.update(other)
return o1
class Options(util.with_metaclass(_MetaOptions)):
"""A cacheable option dictionary with defaults."""
def __init__(self, **kw):
self.__dict__.update(kw)
def __add__(self, other):
o1 = self.__class__.__new__(self.__class__)
o1.__dict__.update(self.__dict__)
if set(other).difference(self._cache_attrs):
raise TypeError(
"dictionary contains attributes not covered by "
"Options class %s: %r"
% (self, set(other).difference(self._cache_attrs))
)
o1.__dict__.update(other)
return o1
def __eq__(self, other):
# TODO: very inefficient. This is used only in test suites
# right now.
for a, b in util.zip_longest(self._cache_attrs, other._cache_attrs):
if getattr(self, a) != getattr(other, b):
return False
return True
def __repr__(self):
# TODO: fairly inefficient, used only in debugging right now.
return "%s(%s)" % (
self.__class__.__name__,
", ".join(
"%s=%r" % (k, self.__dict__[k])
for k in self._cache_attrs
if k in self.__dict__
),
)
@classmethod
def isinstance(cls, klass):
return issubclass(cls, klass)
@hybridmethod
def add_to_element(self, name, value):
return self + {name: getattr(self, name) + value}
@hybridmethod
def _state_dict(self):
return self.__dict__
_state_dict_const = util.immutabledict()
@_state_dict.classlevel
def _state_dict(cls):
return cls._state_dict_const
@classmethod
def safe_merge(cls, other):
d = other._state_dict()
# only support a merge with another object of our class
# and which does not have attrs that we don't. otherwise
# we risk having state that might not be part of our cache
# key strategy
if (
cls is not other.__class__
and other._cache_attrs
and set(other._cache_attrs).difference(cls._cache_attrs)
):
raise TypeError(
"other element %r is not empty, is not of type %s, "
"and contains attributes not covered here %r"
% (
other,
cls,
set(other._cache_attrs).difference(cls._cache_attrs),
)
)
return cls + d
@classmethod
def from_execution_options(
cls, key, attrs, exec_options, statement_exec_options
):
"""process Options argument in terms of execution options.
e.g.::
(
load_options,
execution_options,
) = QueryContext.default_load_options.from_execution_options(
"_sa_orm_load_options",
{
"populate_existing",
"autoflush",
"yield_per"
},
execution_options,
statement._execution_options,
)
get back the Options and refresh "_sa_orm_load_options" in the
exec options dict w/ the Options as well
"""
# common case is that no options we are looking for are
# in either dictionary, so cancel for that first
check_argnames = attrs.intersection(
set(exec_options).union(statement_exec_options)
)
existing_options = exec_options.get(key, cls)
if check_argnames:
result = {}
for argname in check_argnames:
local = "_" + argname
if argname in exec_options:
result[local] = exec_options[argname]
elif argname in statement_exec_options:
result[local] = statement_exec_options[argname]
new_options = existing_options + result
exec_options = util.immutabledict().merge_with(
exec_options, {key: new_options}
)
return new_options, exec_options
else:
return existing_options, exec_options
class CacheableOptions(Options, HasCacheKey):
@hybridmethod
def _gen_cache_key(self, anon_map, bindparams):
return HasCacheKey._gen_cache_key(self, anon_map, bindparams)
@_gen_cache_key.classlevel
def _gen_cache_key(cls, anon_map, bindparams):
return (cls, ())
@hybridmethod
def _generate_cache_key(self):
return HasCacheKey._generate_cache_key_for_object(self)
class ExecutableOption(HasCopyInternals):
_annotations = util.EMPTY_DICT
__visit_name__ = "executable_option"
_is_has_cache_key = False
def _clone(self, **kw):
"""Create a shallow copy of this ExecutableOption."""
c = self.__class__.__new__(self.__class__)
c.__dict__ = dict(self.__dict__)
return c
class Executable(roles.StatementRole, Generative):
"""Mark a :class:`_expression.ClauseElement` as supporting execution.
:class:`.Executable` is a superclass for all "statement" types
of objects, including :func:`select`, :func:`delete`, :func:`update`,
:func:`insert`, :func:`text`.
"""
supports_execution = True
_execution_options = util.immutabledict()
_bind = None
_with_options = ()
_with_context_options = ()
_executable_traverse_internals = [
("_with_options", InternalTraversal.dp_executable_options),
(
"_with_context_options",
ExtendedInternalTraversal.dp_with_context_options,
),
("_propagate_attrs", ExtendedInternalTraversal.dp_propagate_attrs),
]
is_select = False
is_update = False
is_insert = False
is_text = False
is_delete = False
is_dml = False
@property
def _effective_plugin_target(self):
return self.__visit_name__
@_generative
def options(self, *options):
"""Apply options to this statement.
In the general sense, options are any kind of Python object
that can be interpreted by the SQL compiler for the statement.
These options can be consumed by specific dialects or specific kinds
of compilers.
The most commonly known kind of option are the ORM level options
that apply "eager load" and other loading behaviors to an ORM
query. However, options can theoretically be used for many other
purposes.
For background on specific kinds of options for specific kinds of
statements, refer to the documentation for those option objects.
.. versionchanged:: 1.4 - added :meth:`.Generative.options` to
Core statement objects towards the goal of allowing unified
Core / ORM querying capabilities.
.. seealso::
:ref:`deferred_options` - refers to options specific to the usage
of ORM queries
:ref:`relationship_loader_options` - refers to options specific
to the usage of ORM queries
"""
self._with_options += tuple(
coercions.expect(roles.ExecutableOptionRole, opt)
for opt in options
)
@_generative
def _set_compile_options(self, compile_options):
"""Assign the compile options to a new value.
:param compile_options: appropriate CacheableOptions structure
"""
self._compile_options = compile_options
@_generative
def _update_compile_options(self, options):
"""update the _compile_options with new keys."""
self._compile_options += options
@_generative
def _add_context_option(self, callable_, cache_args):
"""Add a context option to this statement.
These are callable functions that will
be given the CompileState object upon compilation.
A second argument cache_args is required, which will be combined with
the ``__code__`` identity of the function itself in order to produce a
cache key.
"""
self._with_context_options += ((callable_, cache_args),)
@_generative
def execution_options(self, **kw):
"""Set non-SQL options for the statement which take effect during
execution.
Execution options can be set on a per-statement or
per :class:`_engine.Connection` basis. Additionally, the
:class:`_engine.Engine` and ORM :class:`~.orm.query.Query`
objects provide
access to execution options which they in turn configure upon
connections.
The :meth:`execution_options` method is generative. A new
instance of this statement is returned that contains the options::
statement = select(table.c.x, table.c.y)
statement = statement.execution_options(autocommit=True)
Note that only a subset of possible execution options can be applied
to a statement - these include "autocommit" and "stream_results",
but not "isolation_level" or "compiled_cache".
See :meth:`_engine.Connection.execution_options` for a full list of
possible options.
.. seealso::
:meth:`_engine.Connection.execution_options`
:meth:`_query.Query.execution_options`
:meth:`.Executable.get_execution_options`
"""
if "isolation_level" in kw:
raise exc.ArgumentError(
"'isolation_level' execution option may only be specified "
"on Connection.execution_options(), or "
"per-engine using the isolation_level "
"argument to create_engine()."
)
if "compiled_cache" in kw:
raise exc.ArgumentError(
"'compiled_cache' execution option may only be specified "
"on Connection.execution_options(), not per statement."
)
self._execution_options = self._execution_options.union(kw)
def get_execution_options(self):
"""Get the non-SQL options which will take effect during execution.
.. versionadded:: 1.3
.. seealso::
:meth:`.Executable.execution_options`
"""
return self._execution_options
@util.deprecated_20(
":meth:`.Executable.execute`",
alternative="All statement execution in SQLAlchemy 2.0 is performed "
"by the :meth:`_engine.Connection.execute` method of "
":class:`_engine.Connection`, "
"or in the ORM by the :meth:`.Session.execute` method of "
":class:`.Session`.",
)
def execute(self, *multiparams, **params):
"""Compile and execute this :class:`.Executable`."""
e = self.bind
if e is None:
label = (
getattr(self, "description", None) or self.__class__.__name__
)
msg = (
"This %s is not directly bound to a Connection or Engine. "
"Use the .execute() method of a Connection or Engine "
"to execute this construct." % label
)
raise exc.UnboundExecutionError(msg)
return e._execute_clauseelement(
self, multiparams, params, util.immutabledict()
)
@util.deprecated_20(
":meth:`.Executable.scalar`",
alternative="Scalar execution in SQLAlchemy 2.0 is performed "
"by the :meth:`_engine.Connection.scalar` method of "
":class:`_engine.Connection`, "
"or in the ORM by the :meth:`.Session.scalar` method of "
":class:`.Session`.",
)
def scalar(self, *multiparams, **params):
"""Compile and execute this :class:`.Executable`, returning the
result's scalar representation.
"""
return self.execute(*multiparams, **params).scalar()
@property
@util.deprecated_20(
":attr:`.Executable.bind`",
alternative="Bound metadata is being removed as of SQLAlchemy 2.0.",
enable_warnings=False,
)
def bind(self):
"""Returns the :class:`_engine.Engine` or :class:`_engine.Connection`
to
which this :class:`.Executable` is bound, or None if none found.
This is a traversal which checks locally, then
checks among the "from" clauses of associated objects
until a bound engine or connection is found.
"""
if self._bind is not None:
return self._bind
for f in _from_objects(self):
if f is self:
continue
engine = f.bind
if engine is not None:
return engine
else:
return None
class prefix_anon_map(dict):
"""A map that creates new keys for missing key access.
Considers keys of the form "<ident> <name>" to produce
new symbols "<name>_<index>", where "index" is an incrementing integer
corresponding to <name>.
Inlines the approach taken by :class:`sqlalchemy.util.PopulateDict` which
is otherwise usually used for this type of operation.
"""
def __missing__(self, key):
(ident, derived) = key.split(" ", 1)
anonymous_counter = self.get(derived, 1)
self[derived] = anonymous_counter + 1
value = derived + "_" + str(anonymous_counter)
self[key] = value
return value
class SchemaEventTarget(object):
"""Base class for elements that are the targets of :class:`.DDLEvents`
events.
This includes :class:`.SchemaItem` as well as :class:`.SchemaType`.
"""
def _set_parent(self, parent, **kw):
"""Associate with this SchemaEvent's parent object."""
def _set_parent_with_dispatch(self, parent, **kw):
self.dispatch.before_parent_attach(self, parent)
self._set_parent(parent, **kw)
self.dispatch.after_parent_attach(self, parent)
class SchemaVisitor(ClauseVisitor):
"""Define the visiting for ``SchemaItem`` objects."""
__traverse_options__ = {"schema_visitor": True}
class ColumnCollection(object):
"""Collection of :class:`_expression.ColumnElement` instances,
typically for
:class:`_sql.FromClause` objects.
The :class:`_sql.ColumnCollection` object is most commonly available
as the :attr:`_schema.Table.c` or :attr:`_schema.Table.columns` collection
on the :class:`_schema.Table` object, introduced at
:ref:`metadata_tables_and_columns`.
The :class:`_expression.ColumnCollection` has both mapping- and sequence-
like behaviors. A :class:`_expression.ColumnCollection` usually stores
:class:`_schema.Column` objects, which are then accessible both via mapping
style access as well as attribute access style.
To access :class:`_schema.Column` objects using ordinary attribute-style
access, specify the name like any other object attribute, such as below
a column named ``employee_name`` is accessed::
>>> employee_table.c.employee_name
To access columns that have names with special characters or spaces,
index-style access is used, such as below which illustrates a column named
``employee ' payment`` is accessed::
>>> employee_table.c["employee ' payment"]
As the :class:`_sql.ColumnCollection` object provides a Python dictionary
interface, common dictionary method names like
:meth:`_sql.ColumnCollection.keys`, :meth:`_sql.ColumnCollection.values`,
and :meth:`_sql.ColumnCollection.items` are available, which means that
database columns that are keyed under these names also need to use indexed
access::
>>> employee_table.c["values"]
The name for which a :class:`_schema.Column` would be present is normally
that of the :paramref:`_schema.Column.key` parameter. In some contexts,
such as a :class:`_sql.Select` object that uses a label style set
using the :meth:`_sql.Select.set_label_style` method, a column of a certain
key may instead be represented under a particular label name such
as ``tablename_columnname``::
>>> from sqlalchemy import select, column, table
>>> from sqlalchemy import LABEL_STYLE_TABLENAME_PLUS_COL
>>> t = table("t", column("c"))
>>> stmt = select(t).set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL)
>>> subq = stmt.subquery()
>>> subq.c.t_c
<sqlalchemy.sql.elements.ColumnClause at 0x7f59dcf04fa0; t_c>
:class:`.ColumnCollection` also indexes the columns in order and allows
them to be accessible by their integer position::
>>> cc[0]
Column('x', Integer(), table=None)
>>> cc[1]
Column('y', Integer(), table=None)
.. versionadded:: 1.4 :class:`_expression.ColumnCollection`
allows integer-based
index access to the collection.
Iterating the collection yields the column expressions in order::
>>> list(cc)
[Column('x', Integer(), table=None),
Column('y', Integer(), table=None)]
The base :class:`_expression.ColumnCollection` object can store
duplicates, which can
mean either two columns with the same key, in which case the column
returned by key access is **arbitrary**::
>>> x1, x2 = Column('x', Integer), Column('x', Integer)
>>> cc = ColumnCollection(columns=[(x1.name, x1), (x2.name, x2)])
>>> list(cc)
[Column('x', Integer(), table=None),
Column('x', Integer(), table=None)]
>>> cc['x'] is x1
False
>>> cc['x'] is x2
True
Or it can also mean the same column multiple times. These cases are
supported as :class:`_expression.ColumnCollection`
is used to represent the columns in
a SELECT statement which may include duplicates.
A special subclass :class:`.DedupeColumnCollection` exists which instead
maintains SQLAlchemy's older behavior of not allowing duplicates; this
collection is used for schema level objects like :class:`_schema.Table`
and
:class:`.PrimaryKeyConstraint` where this deduping is helpful. The
:class:`.DedupeColumnCollection` class also has additional mutation methods
as the schema constructs have more use cases that require removal and
replacement of columns.
.. versionchanged:: 1.4 :class:`_expression.ColumnCollection`
now stores duplicate
column keys as well as the same column in multiple positions. The
:class:`.DedupeColumnCollection` class is added to maintain the
former behavior in those cases where deduplication as well as
additional replace/remove operations are needed.
"""
__slots__ = "_collection", "_index", "_colset"
def __init__(self, columns=None):
object.__setattr__(self, "_colset", set())
object.__setattr__(self, "_index", {})
object.__setattr__(self, "_collection", [])
if columns:
self._initial_populate(columns)
def _initial_populate(self, iter_):
self._populate_separate_keys(iter_)
@property
def _all_columns(self):
return [col for (k, col) in self._collection]
def keys(self):
"""Return a sequence of string key names for all columns in this
collection."""
return [k for (k, col) in self._collection]
def values(self):
"""Return a sequence of :class:`_sql.ColumnClause` or
:class:`_schema.Column` objects for all columns in this
collection."""
return [col for (k, col) in self._collection]
def items(self):
"""Return a sequence of (key, column) tuples for all columns in this
collection each consisting of a string key name and a
:class:`_sql.ColumnClause` or
:class:`_schema.Column` object.
"""
return list(self._collection)
def __bool__(self):
return bool(self._collection)
def __len__(self):
return len(self._collection)
def __iter__(self):
# turn to a list first to maintain over a course of changes
return iter([col for k, col in self._collection])
def __getitem__(self, key):
try:
return self._index[key]
except KeyError as err:
if isinstance(key, util.int_types):
util.raise_(IndexError(key), replace_context=err)
else:
raise
def __getattr__(self, key):
try:
return self._index[key]
except KeyError as err:
util.raise_(AttributeError(key), replace_context=err)
def __contains__(self, key):
if key not in self._index:
if not isinstance(key, util.string_types):
raise exc.ArgumentError(
"__contains__ requires a string argument"
)
return False
else:
return True
def compare(self, other):
"""Compare this :class:`_expression.ColumnCollection` to another
based on the names of the keys"""
for l, r in util.zip_longest(self, other):
if l is not r:
return False
else:
return True
def __eq__(self, other):
return self.compare(other)
def get(self, key, default=None):
"""Get a :class:`_sql.ColumnClause` or :class:`_schema.Column` object
based on a string key name from this
:class:`_expression.ColumnCollection`."""
if key in self._index:
return self._index[key]
else:
return default
def __str__(self):
return "%s(%s)" % (
self.__class__.__name__,
", ".join(str(c) for c in self),
)
def __setitem__(self, key, value):
raise NotImplementedError()
def __delitem__(self, key):
raise NotImplementedError()
def __setattr__(self, key, obj):
raise NotImplementedError()
def clear(self):
"""Dictionary clear() is not implemented for
:class:`_sql.ColumnCollection`."""
raise NotImplementedError()
def remove(self, column):
"""Dictionary remove() is not implemented for
:class:`_sql.ColumnCollection`."""
raise NotImplementedError()
def update(self, iter_):
"""Dictionary update() is not implemented for
:class:`_sql.ColumnCollection`."""
raise NotImplementedError()
__hash__ = None
def _populate_separate_keys(self, iter_):
"""populate from an iterator of (key, column)"""
cols = list(iter_)
self._collection[:] = cols
self._colset.update(c for k, c in self._collection)
self._index.update(
(idx, c) for idx, (k, c) in enumerate(self._collection)
)
self._index.update({k: col for k, col in reversed(self._collection)})
def add(self, column, key=None):
"""Add a column to this :class:`_sql.ColumnCollection`.
.. note::
This method is **not normally used by user-facing code**, as the
:class:`_sql.ColumnCollection` is usually part of an existing
object such as a :class:`_schema.Table`. To add a
:class:`_schema.Column` to an existing :class:`_schema.Table`
object, use the :meth:`_schema.Table.append_column` method.
"""
if key is None:
key = column.key
l = len(self._collection)
self._collection.append((key, column))
self._colset.add(column)
self._index[l] = column
if key not in self._index:
self._index[key] = column
def __getstate__(self):
return {"_collection": self._collection, "_index": self._index}
def __setstate__(self, state):
object.__setattr__(self, "_index", state["_index"])
object.__setattr__(self, "_collection", state["_collection"])
object.__setattr__(
self, "_colset", {col for k, col in self._collection}
)
def contains_column(self, col):
"""Checks if a column object exists in this collection"""
if col not in self._colset:
if isinstance(col, util.string_types):
raise exc.ArgumentError(
"contains_column cannot be used with string arguments. "
"Use ``col_name in table.c`` instead."
)
return False
else:
return True
def as_immutable(self):
"""Return an "immutable" form of this
:class:`_sql.ColumnCollection`."""
return ImmutableColumnCollection(self)
def corresponding_column(self, column, require_embedded=False):
"""Given a :class:`_expression.ColumnElement`, return the exported
:class:`_expression.ColumnElement` object from this
:class:`_expression.ColumnCollection`
which corresponds to that original :class:`_expression.ColumnElement`
via a common
ancestor column.
:param column: the target :class:`_expression.ColumnElement`
to be matched.
:param require_embedded: only return corresponding columns for
the given :class:`_expression.ColumnElement`, if the given
:class:`_expression.ColumnElement`
is actually present within a sub-element
of this :class:`_expression.Selectable`.
Normally the column will match if
it merely shares a common ancestor with one of the exported
columns of this :class:`_expression.Selectable`.
.. seealso::
:meth:`_expression.Selectable.corresponding_column`
- invokes this method
against the collection returned by
:attr:`_expression.Selectable.exported_columns`.
.. versionchanged:: 1.4 the implementation for ``corresponding_column``
was moved onto the :class:`_expression.ColumnCollection` itself.
"""
def embedded(expanded_proxy_set, target_set):
for t in target_set.difference(expanded_proxy_set):
if not set(_expand_cloned([t])).intersection(
expanded_proxy_set
):
return False
return True
# don't dig around if the column is locally present
if column in self._colset:
return column
col, intersect = None, None
target_set = column.proxy_set
cols = [c for (k, c) in self._collection]
for c in cols:
expanded_proxy_set = set(_expand_cloned(c.proxy_set))
i = target_set.intersection(expanded_proxy_set)
if i and (
not require_embedded
or embedded(expanded_proxy_set, target_set)
):
if col is None:
# no corresponding column yet, pick this one.
col, intersect = c, i
elif len(i) > len(intersect):
# 'c' has a larger field of correspondence than
# 'col'. i.e. selectable.c.a1_x->a1.c.x->table.c.x
# matches a1.c.x->table.c.x better than
# selectable.c.x->table.c.x does.
col, intersect = c, i
elif i == intersect:
# they have the same field of correspondence. see
# which proxy_set has fewer columns in it, which
# indicates a closer relationship with the root
# column. Also take into account the "weight"
# attribute which CompoundSelect() uses to give
# higher precedence to columns based on vertical
# position in the compound statement, and discard
# columns that have no reference to the target
# column (also occurs with CompoundSelect)
col_distance = util.reduce(
operator.add,
[
sc._annotations.get("weight", 1)
for sc in col._uncached_proxy_set()
if sc.shares_lineage(column)
],
)
c_distance = util.reduce(
operator.add,
[
sc._annotations.get("weight", 1)
for sc in c._uncached_proxy_set()
if sc.shares_lineage(column)
],
)
if c_distance < col_distance:
col, intersect = c, i
return col
class DedupeColumnCollection(ColumnCollection):
"""A :class:`_expression.ColumnCollection`
that maintains deduplicating behavior.
This is useful by schema level objects such as :class:`_schema.Table` and
:class:`.PrimaryKeyConstraint`. The collection includes more
sophisticated mutator methods as well to suit schema objects which
require mutable column collections.
.. versionadded:: 1.4
"""
def add(self, column, key=None):
if key is not None and column.key != key:
raise exc.ArgumentError(
"DedupeColumnCollection requires columns be under "
"the same key as their .key"
)
key = column.key
if key is None:
raise exc.ArgumentError(
"Can't add unnamed column to column collection"
)
if key in self._index:
existing = self._index[key]
if existing is column:
return
self.replace(column)
# pop out memoized proxy_set as this
# operation may very well be occurring
# in a _make_proxy operation
util.memoized_property.reset(column, "proxy_set")
else:
l = len(self._collection)
self._collection.append((key, column))
self._colset.add(column)
self._index[l] = column
self._index[key] = column
def _populate_separate_keys(self, iter_):
"""populate from an iterator of (key, column)"""
cols = list(iter_)
replace_col = []
for k, col in cols:
if col.key != k:
raise exc.ArgumentError(
"DedupeColumnCollection requires columns be under "
"the same key as their .key"
)
if col.name in self._index and col.key != col.name:
replace_col.append(col)
elif col.key in self._index:
replace_col.append(col)
else:
self._index[k] = col
self._collection.append((k, col))
self._colset.update(c for (k, c) in self._collection)
self._index.update(
(idx, c) for idx, (k, c) in enumerate(self._collection)
)
for col in replace_col:
self.replace(col)
def extend(self, iter_):
self._populate_separate_keys((col.key, col) for col in iter_)
def remove(self, column):
if column not in self._colset:
raise ValueError(
"Can't remove column %r; column is not in this collection"
% column
)
del self._index[column.key]
self._colset.remove(column)
self._collection[:] = [
(k, c) for (k, c) in self._collection if c is not column
]
self._index.update(
{idx: col for idx, (k, col) in enumerate(self._collection)}
)
# delete higher index
del self._index[len(self._collection)]
def replace(self, column):
"""add the given column to this collection, removing unaliased
versions of this column as well as existing columns with the
same key.
e.g.::
t = Table('sometable', metadata, Column('col1', Integer))
t.columns.replace(Column('col1', Integer, key='columnone'))
will remove the original 'col1' from the collection, and add
the new column under the name 'columnname'.
Used by schema.Column to override columns during table reflection.
"""
remove_col = set()
# remove up to two columns based on matches of name as well as key
if column.name in self._index and column.key != column.name:
other = self._index[column.name]
if other.name == other.key:
remove_col.add(other)
if column.key in self._index:
remove_col.add(self._index[column.key])
new_cols = []
replaced = False
for k, col in self._collection:
if col in remove_col:
if not replaced:
replaced = True
new_cols.append((column.key, column))
else:
new_cols.append((k, col))
if remove_col:
self._colset.difference_update(remove_col)
if not replaced:
new_cols.append((column.key, column))
self._colset.add(column)
self._collection[:] = new_cols
self._index.clear()
self._index.update(
{idx: col for idx, (k, col) in enumerate(self._collection)}
)
self._index.update(self._collection)
class ImmutableColumnCollection(util.ImmutableContainer, ColumnCollection):
__slots__ = ("_parent",)
def __init__(self, collection):
object.__setattr__(self, "_parent", collection)
object.__setattr__(self, "_colset", collection._colset)
object.__setattr__(self, "_index", collection._index)
object.__setattr__(self, "_collection", collection._collection)
def __getstate__(self):
return {"_parent": self._parent}
def __setstate__(self, state):
parent = state["_parent"]
self.__init__(parent)
add = extend = remove = util.ImmutableContainer._immutable
class ColumnSet(util.ordered_column_set):
def contains_column(self, col):
return col in self
def extend(self, cols):
for col in cols:
self.add(col)
def __add__(self, other):
return list(self) + list(other)
def __eq__(self, other):
l = []
for c in other:
for local in self:
if c.shares_lineage(local):
l.append(c == local)
return elements.and_(*l)
def __hash__(self):
return hash(tuple(x for x in self))
def _bind_or_error(schemaitem, msg=None):
util.warn_deprecated_20(
"The ``bind`` argument for schema methods that invoke SQL "
"against an engine or connection will be required in SQLAlchemy 2.0."
)
bind = schemaitem.bind
if not bind:
name = schemaitem.__class__.__name__
label = getattr(
schemaitem, "fullname", getattr(schemaitem, "name", None)
)
if label:
item = "%s object %r" % (name, label)
else:
item = "%s object" % name
if msg is None:
msg = (
"%s is not bound to an Engine or Connection. "
"Execution can not proceed without a database to execute "
"against." % item
)
raise exc.UnboundExecutionError(msg)
return bind
def _entity_namespace(entity):
"""Return the nearest .entity_namespace for the given entity.
If not immediately available, does an iterate to find a sub-element
that has one, if any.
"""
try:
return entity.entity_namespace
except AttributeError:
for elem in visitors.iterate(entity):
if hasattr(elem, "entity_namespace"):
return elem.entity_namespace
else:
raise
def _entity_namespace_key(entity, key, default=NO_ARG):
"""Return an entry from an entity_namespace.
Raises :class:`_exc.InvalidRequestError` rather than attribute error
on not found.
"""
try:
ns = _entity_namespace(entity)
if default is not NO_ARG:
return getattr(ns, key, default)
else:
return getattr(ns, key)
except AttributeError as err:
util.raise_(
exc.InvalidRequestError(
'Entity namespace for "%s" has no property "%s"'
% (entity, key)
),
replace_context=err,
)